
Learning to Validate the Predictions of
Black Box Machine Learning Models on Unseen Data

Sergey Redyuk* Sebastian Schelter† Tammo Rukat**
Volker Markl* Felix Biessmann‡

{sergey.redyuk,volker.markl}@tu-berlin.de sebastian.schelter@nyu.edu {tammorukat,felix.biessmann}@gmail.com
*Technische Universität Berlin †New York University **University of Oxford ‡Beuth University Berlin

ABSTRACT
When end users apply a machine learning (ML) model on
new unlabeled data, it is difficult for them to decide whether
they can trust its predictions. Errors or shifts in the target
data can lead to hard-to-detect drops in the predictive quality
of the model. We therefore propose an approach to assist
non-ML experts working with pretrained ML models. Our
approach estimates the change in prediction performance of
a model on unseen target data. It does not require explicit
distributional assumptions on the dataset shift between the
training and target data. Instead, a domain expert can declar-
atively specify typical cases of dataset shift that she expects
to observe in real-world data. Based on this information, we
learn a performance predictor for pretrained black boxmodels,
which can be combined with the model, and automatically
warns end users in case of unexpected performance drops.
We demonstrate the effectiveness of our approach on two
models – logistic regression and a neural network, applied
to several real-world datasets.

ACM Reference Format:
Sergey Redyuk, Sebastian Schelter, Felix Biessmann, Volker Markl.
2019. Learning to Validate the Predictions of Black BoxMachine Learn-
ing Models on Unseen Data. In Workshop on Human-In-the-Loop
Data Analytics (HILDA’19), July 5, 2019, Amsterdam, Netherlands.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3328519.
3329126

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HILDA’19, July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-6791-2/19/07. . . $15.00
https://doi.org/10.1145/3328519.3329126

1 INTRODUCTION
New challenges emerge with the advent of machine learn-
ing (ML) as a central component in modern information
infrastructures [4]. Problems in this space originate, for ex-
ample, from developers having to handle unexpected shifts
in the data that is fed into systems powered by machine
learning. Consider the following examplary scenario: A con-
sultant with ML expertise creates a ML model for predict-
ing the sales numbers of competitor products, and provides
the final trained model to an engineering team from an e-
commerce company. Imagine that some time later, this en-
gineering team accidentally introduces errors in the web
crawling code that fetches new target data for the model,
and the error changes the scale of certain numeric attributes.
The model will still output numeric predictions for unseen
competitor products, but the guarantees about the reliability
of these predictions are lost due to the unexpected shift in
the data. Unfortunately, it is really difficult for the engineers
to validate the predictions, as there is no automated way to
retrieve the ground truth (the future sales numbers of the
competitor in this scenario).
While ML experts have specialized knowledge to debug

models and predictions in such cases, there is a lack of auto-
mated, declarative tools for non-ML expert users to help them
decide whether they can trust the predictions of a ML model
on new data.

We therefore propose an approach where domain experts
and end users only need to declaratively specify types of
potential shifts in the target data of their ML models. Based
on these, we describe how to learn a performance predictor
for an existing ML model, which can be shipped together
with the model (Section 2). This predictor empowers end
users, as it can automatically warn them in case of poten-
tial drops of the predictive quality of the model on unseen
data. Our method is easy to implement, and provides several
advantages over existing work (Section 3) in this area: (i) it
does not require explicit distributional assumptions on the
dataset shift; (ii) our approach works with general black box
models, which consume raw input data (e.g., relational tuples
or unstructed data, such as text or images), and hide model

https://doi.org/10.1145/3328519.3329126
https://doi.org/10.1145/3328519.3329126
https://doi.org/10.1145/3328519.3329126

HILDA’19, July 5, 2019, Amsterdam, Netherlands Redyuk et al.

details and internal feature representations. Examples for
such black box models are scikit-learn pipelines, SparkML
pipelines, or hosted models in cloud ML services.
The contributions of this paper are the following:

• We present an approach to automatically assess changes
in the prediction scores of black box ML models on unseen,
unlabeled and potentially erroneous target data (Section 2).
• We validate our approach on various datasets, shifts and
models, and find that it predicts the true model score with
an MAE of 0.01 in the majority of cases (Section 4).

2 APPROACH
Problem statement. We focus on generic black box ML
models in the form of a classification function f : X → Rc ,
which takes an example x ∈ X and returns a prediction
ŷ ∈ Rc for the c classes. Here, x refers to raw input data
for the black box model, e.g., a row from a relational table
or dataframe, which can contain numerical, ordinal or cate-
gorical variables, as well as unstructured data, such as text
and images. The black box model f will internally apply
transformations to convert the raw input data to numeri-
cal features. The predictions ŷ ∈ Rc are numeric vectors,
and each dimension of ŷ corresponds to a probability of the
c classes. We refer to the data that is available for the ML
model f at training time as the source dataset – Dsource of
labeled examples (X, y) where y denotes the ground truth
labels for the examples X from c classes. During training, an
ML expert tunes all parameters and hyperparameters of the
black box model f to maximize a score ℓ = L(f (X), y) such
as accuracy, precision, or area under the ROC curve (AUC).
We consider a typical use case, where an end user (who

is not an ML expert) applies the trained black box model to
another datasetDtarget, referred to as target dataset. This data
is not available at training time and has no labels available at
prediction time. Most ML models rely upon the i.i.d. assump-
tion, meaning that both the source and target data are sam-
pled independently from the same stationary distribution.
In real-world scenarios however, Dtarget could be corrupted
(and thereby violate this assumption) due to dataset shift, e.g.,
caused by errors induced by the data preparation code, due
to a distribution shift caused by changes in the underlying
data generating process in the real-world, or due to adver-
sarial attacks. In such cases, there is no guarantee about the
reliability of the predictions. If the trained model is applied
to target data that underwent a dataset shift, the resulting
predictions can be arbitrarily wrong in principle. However,
the predictive performance of the model, measured by the
score ℓtarget = L(f (Xtarget), ytarget) could only be computed if
we had access to the true labels ytarget, which are unknown
for Dtarget.

Algorithm 1 Training the performance predictor h.
Input: (Dtrain,Dtest) disjunct partitions of Dsource

black box model f pretrained on Dtrain
1: (Xtest, ytest) ← Dtest
2: ℓtest ← L(f (Xtest), ytest)
3: M ← ∅
4: for shift generator e ← E do
5: Xcorrupt ← corrupt Xtest ∈ Dtest with e

6: Ŷcorrupt ← f (Xcorrupt)

7: ℓcorrupt ← L(Ŷcorrupt, ytest)
8: ϕcorrupt ← percentiles(Ŷcorrupt)
9: M ← M ∪ (ϕcorrupt, ℓcorrupt)
10: end for
11: h ← train a regression model on M
12: return (h, ltest)

The problem that we address in this work is to compute an
estimate ℓ̂target of the score ℓtarget, which the black box model
achieves on the target examples Xtarget without access to the
corresponding ground truth labels ytarget. If the score drops,
the model should not be used, and an ML expert should be
consulted to decide what to do next.

Our approach is based on the idea of (i) simulating dataset
shifts, specified by a domain expert, which could occur in
the target data of a trained model, and (ii) subsequently
learning a model-specific performance predictor (in the form
of a regression model) to estimate the impact of these shifts
on the black box model’s performance. We simulate dataset
shifts on a held-out partition of the source dataset for which
we know the ground truth labels. If the user-specified shifts
capture the dataset shifts encountered in practice well, then
the outputs of our predictor will be a reliable estimate of the
performance of the black box model on the new data at hand,
even though we do not know the true labels.
Training the performance predictor. The steps for train-
ing a performance predictor h for a particular black box
model are shown in Algorithm 1. We assume that we are
provided with a black box model f which has been trained
on the source data. Furthermore, a domain expert specifies a
set of shift generators E that produce certain types of ran-
domized dataset shifts. We apply each shift generator e to
held-out data Dtest from the training process, and thereby
generate corrupted examples Xcorrupt in line 5. We compute
the actual prediction score ℓcorrupt by comparing the model
predictions Ŷcorrupt with the true labels ytest in line 7. Exist-
ing work suggests that the univariate distributions of the
output dimensions of the matrix Ŷ = f (X) are predictive of
dataset shifts [2, 3]. We build on these findings, and leverage
a univariate non-parametric estimate of the distributions of
each output dimension of f . More concretely, we compute

Learning to Validate the Predictions of Black Box ML Models HILDA’19, July 5, 2019, Amsterdam, Netherlands

several percentiles ϕcorrupt of the black box model outputs
Ŷcorrupt = f (Xcorrupt) as features for the performance predic-
tor h. We record both the features ϕcorrupt and the score as
training data for our regression model in the setM (lines 3-
10). Finally, we train our performance predictor h on these
examples in line 11 to predict the score ℓcorrupt from the
features ϕcorrupt.
Performance prediction on unseen target data. Algo-
rithm 2 gives an example of how to apply our performance
predictorh to unseen (and unlabeled) target dataXtarget. First,
we compute the required features ϕtarget in the form of per-
centiles of the outputs Ŷtarget, which the model f assigns to
the examples Xtarget. Next, we have our performance predic-
tor h estimate the score ℓ̂target = h(ϕtarget) of f on the target
data, and compare this to the expected generalization error
ℓtest, which we computed during predictor training. If the
difference exceeds a user-defined threshold t (e.g., 5%), we
issue a warning to the end user.

Algorithm 2 Prediction validation for unlabeled target data.
Input: target data Xtarget, black box model f , test score ℓtest,

performance predictor h, threshold t
1: Ŷtarget ← f (Xtarget)

2: ϕtarget ← percentiles(Ŷtarget)

3: ℓ̂target ← h(ϕtarget)

4: return (|ℓtest − ℓ̂target | / ℓtest) ≤ t

3 RELATEDWORK
Applying data management techniques in the ML space is
a field with growing interest in recent years [4]. Several so-
lutions were proposed for validating ML models and their
predictions. Most of these originate from a statistical ML
or a data management perspective. The former require as-
sumptions on the nature of the dataset shift [2, 6], which
often seem inapt to describe practically relevant data changes
for engineers and domain experts, and the proposed meth-
ods often limit themselves to adapting a particular model
or learning paradigm. Approaches from the data manage-
ment community [1, 5] often require manual tuning, detailed
knowledge of model internals and features, or do not di-
rectly adress the problem of validating model predictions.
For instance, Google’s TFX platform [1] offers skew detec-
tion capabilities for featurized input data, but forces the end
user to manually select an appropriate distance function and
threshold for particular features. In short, these methods
are not applicable in scenarios where we intend to handle
pretrained black box models that consume raw input data.

4 EVALUATION
Datasets and models. We experiment on three publicly
available datasets from different domains. The income1 dataset
contains 48,842 records about adult income data, and the tar-
get variable denotes whether a person earns more than 50K
dollars per year or not. The heart2 dataset contains 70,001
records about cardiovascular diseases, and the target variable
denotes the presence of a heart disease. The tweets3 dataset
comprises of 20,002 tweets, and the target variable denotes
whether or not a tweet has trolling character (e.g., intended
to insult someone). We leverage two popular classification
approaches as black box models for our experiments: (i) we
train a logistic regression model from scikit-learn (refered to
as lr), using five-fold cross-validation where we grid search
over regularization type and constant; (ii) we train a feed-
forward neural network from tensorflow (refered to as dnn),
comprised of two hidden layers with ReLU activation and a
softmax output. We again use five-fold cross-validation and
grid search over the size of the hidden layers.
Setup. For every experimental run, we randomly partition a
dataset into one partition with 90% of the records designated
as source data and another disjoint partition with 10% of the
records designated as target data. Next, we train one of our
black box models on the source data, as described in Sec-
tion 2. We implement our performance prediction approach
in Python with a RandomForestRegressor, and train a pre-
dictor for each black box model, according to Algorithm 1.
Afterwards, we apply shift generators to the unseen target
data and create randomly corrupted versions of that data.
We then have the performance predictor estimate the score
on the unseen corrupted data, and compare this estimate to
the actual score using the mean absolute error (MAE) (which
we can compute in this virtual setup because we have access
to the true labels). We run experiments to predict both accu-
racy as well as AUC; for experimental runs measuring the
accuracy, we re-sample the data to have balanced classes to
make the scores easier to interpret.
Types of errors and dataset shifts. We experiment with
four different types of errors that we introduce into the un-
seen target data. For each type of error, we subsequently
corrupt 0%, 5%, 25%, 50%, 75% and 99% of records in the
dataset, and repeat each configuration 100 times: (i) Missing
values in categorical attributes – Figure 1(a): In our first ex-
periment, we choose a random set of categorical columns,
and introduce missing values at random into these columns.
(ii) Gaussian shift in numeric attributes – Figure 1(b): We
randomly choose a set of numeric columns, and corrupt a
1https://archive.ics.uci.edu/ml/datasets/adult
2https://www.kaggle.com/sulianova/cardiovascular-disease-dataset
3https://dataturks.com/projects/abhishek.narayanan/Dataset%20for%
20Detection%20of%20Cyber-Trolls/

https://archive.ics.uci.edu/ml/datasets/adult
https://www.kaggle.com/sulianova/cardiovascular-disease-dataset
https://dataturks.com/projects/abhishek.narayanan/Dataset%20for%20Detection%20of%20Cyber-Trolls/
https://dataturks.com/projects/abhishek.narayanan/Dataset%20for%20Detection%20of%20Cyber-Trolls/

HILDA’19, July 5, 2019, Amsterdam, Netherlands Redyuk et al.

0.05
0.00
0.05er

ro
r

MAE 0.0109

income (lr)

MAE 0.0073

heart (lr)

MAE 0.0045

income (lr)

MAE 0.0102

heart (lr)

0.5 0.6 0.7 0.8
true score

0.05
0.00
0.05er

ro
r

MAE 0.0202

income (dnn)

0.5 0.6 0.7 0.8
true score

MAE 0.0082

heart (dnn)

0.5 0.6 0.7 0.8
true score

MAE 0.0057

income (dnn)

0.5 0.6 0.7 0.8
true score

MAE 0.0043

heart (dnn)

(a) Score estimation in presence of missing values in categorical attributes.

0.05
0.00
0.05er

ro
r

MAE 0.0067

income (lr)

MAE 0.0137

heart (lr)

MAE 0.0126

income (lr)

MAE 0.0108

heart (lr)

0.5 0.6 0.7 0.8
true score

0.05
0.00
0.05er

ro
r

MAE 0.0067

income (dnn)

0.5 0.6 0.7 0.8
true score

MAE 0.0116

heart (dnn)

0.5 0.6 0.7 0.8
true score

MAE 0.0056

income (dnn)

0.5 0.6 0.7 0.8
true score

MAE 0.0092

heart (dnn)

(b) Score estimation in presence of Gaussian shift in numeric attributes.

0.05
0.00
0.05er

ro
r

MAE 0.0219

income (lr)

MAE 0.0086

heart (lr)

MAE 0.0080

income (lr)

MAE 0.0049

heart (lr)

0.5 0.6 0.7 0.8
true score

0.05
0.00
0.05er

ro
r

MAE 0.0098

income (dnn)

0.5 0.6 0.7 0.8
true score

MAE 0.0093

heart (dnn)

0.5 0.6 0.7 0.8
true score

MAE 0.0055

income (dnn)

0.5 0.6 0.7 0.8
true score

MAE 0.0055

heart (dnn)

(c) Score estimation in presence of swapped attributes.

0.5 0.6 0.7 0.8
true score

0.05
0.00
0.05er

ro
r

MAE 0.0191

tweets (lr)

0.5 0.6 0.7 0.8
true score

MAE 0.0097

tweets (dnn)

0.5 0.6 0.7 0.8
true score

MAE 0.0097

tweets (lr)

0.5 0.6 0.7 0.8
true score

MAE 0.0115

tweets (dnn)

(d) Score estimation in presence of adversarial trolling tweets.

Figure 1: Score estimation for various shifts, models and datasets. The x-axis denotes the true model scores ℓ and
the y-axis shows the corresponding absolute errors ℓ − ℓ̂ from the estimate ℓ̂ given by our performance predictor.
Each plot group shows accuracy prediction in blue on the left side and AUC prediction in magenta on the right.

fraction of their values by adding Gaussian noise centered
in the data point with a standard deviation randomly scaled
from the interval of 2 to 5. (iii) Swapped column values –
Figure 1(c): We choose different pairs of categorical and nu-
merical columns, and randomly swap the contained values
between the columns. (iv) Adversarial attack – Figure 1(d):
This experiment leverages the tweets dataset exclusively and
simulates an adversarial attack. We assume that the authors
of the trolling tweets try to fool our classifier by changing
the spelling of their tweets, e.g., by converting the string
“hello world” into “h3110 w041d”.
Results. Figure 1 demonstrates the results of the correspond-
ing experiments. We report the accuracy and AUC score that
our approach provided for our two black box models – lo-
gistic regression and the neural network – on the datasets
and the introduced shifts. Our approach predicts the true
performance score within an MAE of 0.01 in the majority of
cases. In three cases (logistic regression on the income data
with swapped columns, application of the neural network on
the income data with missing values, and logistic regression
on the adversarial attack in the tweets dataset), our approach
underpredicts the accuracy of the black box model, and only
achieves an MAE of 0.02. In general, our predictions are
close to the true performance score on the unseen data. We
thereby enable end users to distinguish catastrophic model
failures (such as cases with a low true score, where the model
tends to randomly guess) from cases where the performance
is only slightly affected by the shifts in the data.

5 FUTUREWORK
In future work, we plan to extend our approach to give more
elaborate feedback to end users to empower them to fix
the data errors and arrive at reliable model predictions. We
will furthermore investigate how well our method performs
when combinations of different shifts and errors are present
in the target data, and how well our predictor works in cases
where it has not been trained on the correct type of shift.
This work was supported by the Moore-Sloan Data Science
Environment at New York University, as well as the BZML
Berlin, ECDF and HEIBRiDS Graduate School Berlin.

REFERENCES
[1] Denis Baylor, Eric Breck, Heng-Tze Cheng, and Martin Zinkevich. 2017.

TFX: A TensorFlow-Based Production-Scale Machine Learning Platform.
KDD (2017), 1387–1395.

[2] Zachary C Lipton, Yu-Xiang Wang, and Alex Smola. 2018. Detecting
and Correcting for Label Shift with Black Box Predictors. arXiv preprint
arXiv:1802.03916 (2018).

[3] Stephan Rabanser, Stephan Günnemann, and Zachary C Lipton. 2018.
Failing Loudly: An Empirical Study of Methods for Detecting Dataset
Shift. arXiv preprint arXiv:1810.11953 (2018).

[4] Sebastian Schelter, Felix Biessmann, Tim Januschowski, David Salinas,
Stephan Seufert, and Gyuri Szarvas. 2018. On Challenges in Machine
Learning Model Management. IEEE Data Engineering Bulletin (12 2018).

[5] Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix
Biessmann, and Andreas Grafberger. 2018. Automating large-scale data
quality verification. PVLDB 11, 12 (2018), 1781–1794.

[6] Masashi Sugiyama, Neil D Lawrence, Anton Schwaighofer, et al. 2017.
Dataset shift in machine learning. The MIT Press.

	Abstract
	1 Introduction
	2 Approach
	3 Related Work
	4 Evaluation
	5 Future Work
	References

