
Interactive Summarization of Large Document Collections
Benjamin Hättasch

TU Darmstadt
Christian M. Meyer

TU Darmstadt
Carsten Binnig

TU Darmstadt

ABSTRACT
We present a new system for custom summarizations of large text
corpora at interactive speed. The task of producing textual sum-
maries is an important step to understand large collections of topic-
related documents and has many real-world applications in jour-
nalism, medicine, and many more. Key to our system is that the
summarization model is refined by user feedback and called mul-
tiple times to improve the quality of the summaries iteratively. To
that end, the human is brought into the loop to gather feedback in
every iteration about which aspects of the intermediate summaries
satisfy their individual information needs. Our system consists of
a sampling component and a learned model to produce a textual
summary. As we show in our evaluation, our system can provide
a similar quality level as existing summarization models that are
working on the full corpus and hence cannot provide interactive
speeds.

1 INTRODUCTION
Motivation: Existing data-centric systems for interactively ma-

nipulating, analyzing and exploring large data sets focus particularly
on structured data. However, in many use cases the relevant data
sources are not structured but are only present as a collection of
texts. There already exist systems for text exploration like [3] and
[2] that allow data scientists of varying skill levels and novice users
to interactively analyze unstructured text document collections—
however, those systems concentrate mainly on keyword searches
and document ranking.

While keyword-based search systems are important to filter down
the number of relevant documents, they still do not support users
in semantically understanding the document collection. Imagine
for example a journalist who just received a large collection of
documents to start an investigative case, or a lawyer who needs
to screen a large collection of e-mail conversations. In all these
examples, an important step to better understand the collection of text
and find the overall relation and event structure of those documents
is to produce a concise textual summary that captures most of the
important information relevant to a user’s individual goal.

The task of producing textual summaries from a collection of
documents is a well-established task in the text analysis community
[7]. Despite a lot of research in this area, it is still a major challenge to
automatically produce summaries that are on par with human-written

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HILDA’19, July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
ACM ISBN 978-1-4503-6791-2/19/07. . . $15.00
https://doi.org/10.1145/3328519.3329129

Figure 1: Scalability of Text Summarization Models [5]

ones. To a large extent, this is due to the complexity of the task: a
good summary must include the most relevant information, omit
redundancy and irrelevant information, satisfy a length constraint,
and be cohesive. But an even bigger challenge is the high degree
of subjectivity in the summarization task, as it can be seen in the
small overlap of what is considered important by different users [6].
Optimizing a system towards one single best summary that fits all
users, as it is assumed by current state-of-the-art systems, is highly
impractical and diminishes the usefulness of a system for real-world
use cases.

In a recent paper [6], we have shown that user feedback signifi-
cantly improves the quality of the summary. However, each iteration
of learning to create a new summary based on the user’s feedback
can take from several seconds for small document collections to
hours for larger collections as shown in Figure 1 (black line). Since
the customization of the summary depends on the user’s feedback,
it is one of the most important aspects to keep users involved in
the exploration process. Yet this can hardly be reached with long
iteration times of multiple hours, even waiting times of minutes
or multiple seconds can already cause the user to loose interest. A
previous study [4] has shown that even small delays of more than
500ms significantly decrease a user’s activity level, dataset coverage,
and insight discovery rate.

Contributions: In this paper, we present Sherlock that allows
users to interactively summarize large text collections. In order to
provide interactive response times in each iteration of the summa-
rization procedure, we are using a novel approximate summarization
model. The main idea of the approximate summarization model is
similar to approximate query processing in databases: instead of
looking at the complete document collection in every iteration, we
only consider a sample from the documents per iteration to compute
the summary. As a main contribution, we propose a method to se-
lect the sample size based on iteration time thresholds and evaluate
multiple different sampling strategies. As we show in Figure 1, that
way our approximate summarization model can provide interactive
latency for each interaction loop independent of the size of the text
collection that is being summarized (orange and blue line).

https://doi.org/10.1145/3328519.3329129

HILDA’19, July 5, 2019, Amsterdam, Netherlands Benjamin Hättasch et al.

We already presented a demo of Sherlock at VLDB 2018 [5].
However, sampling on natural language is not a trivial task. In this
paper, our main goal is studying the effectiveness of multiple sam-
pling strategies and the impact of the sample size on the summariza-
tion quality. To this end, we employ importance-based and stratified
sampling, and we benchmark them in a systematic experimental
setup on different document collections.

A related paper was recently published for sampling training data
for machine learning [8]. In their paper, the authors suggest to use
controlled sampling for architecture selection to predict the errors
introduced by the approximate model. While their work concen-
trated mainly on classical models learned from structured data, we
will investigate the effects of sampling for textual summarization
models with different desired properties (e.g., subjective importance
of concepts or wide vs. focused textual summaries).

Outline: The remainder of the paper is structured as follows: In
Section 2 we describe the high-level idea of our system for interactive
summarization and then propose different sampling strategies and
explain the sample size estimation in Section 3. We then show an
initial experimental evaluation of our novel sampling strategies on
the model quality in Section 4.

2 SYSTEM OVERVIEW
Sherlock [5], our system for interactive summarization, consists
of two major components as shown in Figure 2: a web-based user
interface to collect the user’s feedback and a backend that refines the
text summarization model. The backend hosts multiple components:
a document store (input docs in Figure 2) including the required
indexes, the summarization component that accumulates the user
feedback and learns to create summaries for every iteration as well
as our approximate model to execute the summarization process at
interactive speeds.

User Interface: The web-based interface allows users to sum-
marize a collection of textual documents in an interactive manner.
A screenshot of the interface is included in Figure 2. In a typical
setup, a user would need to read all the documents and manually
summarize them. In our interactive setup, the user receives a sum-
mary, annotates all important and unimportant (parts of) sentences,
and submits them as feedback for the next iteration where a refined
summary is created by Sherlock and the user provides the next round
of feedback.

Interactive Backend: The main task of the backend is to compute
the summary for each iteration by taking the documents and the
user feedback into account. In our system, we currently employ
the summarization model as presented in [6] which maximizes the
weighted occurrence of concepts in the summary by using an integer
linear program (ILP). The first summary which is presented to the
user is based on a model without any user feedback. Afterwards,
in every iteration the summarization model is refined based on the
user feedback of all previous iterations; i.e., the user can adjust the
concept weights and hence the ILP needs to be re-executed. Instead
of using the full document corpus as input, our backend uses samples
of a given size (from very small to full data) resulting in different
iteration times and expected quality. The details of our approximate
summarization model are explained in the next section.

Figure 2: System Overview of Sherlock.

3 APPROXIMATE SUMMARIZATION MODEL
The main idea of our approximate summarization model is to take
the user feedback of the last iteration into account, adjust the summa-
rization model and then return a new version of the summary to the
user. As discussed before, in order to achieve interactive response
times in every iteration, the approximate summarization model takes
a sample of the overall document collection as input. The sampling
strategy and the sample size have a big impact on the performance
and the quality of the summarization model. In the following sub-
sections, we discuss both these aspects in detail.

3.1 Sampling Strategies
In this first subsection, we discuss which sentences should be sam-
pled in every iteration to refine the trained summarization model.
There are numerous possibilities. In this paper, we suggest and
evaluate three sampling strategies tailored towards training textual
summarization models:

Random: This is the simplest sampling strategy where we just
use a fixed number of randomly selected sentences in each iteration.
This method is used as a baseline compared to the more sophisticated
sampling strategies discussed next.

Importance-based (called TOP-K as well): Instead of sampling
randomly, we suggest a second strategy that takes the importance of
a sentence into account when sampling from the underlying docu-
ment collection (i.e., more important sentences are sampled with a
higher likelihood). Our intuition is that sentences with a higher in-
formation density (containing more concepts rated as important) are
more relevant to the user. As concepts, we use bigrams in our system
as suggested by [6]. We initialize the weight of a concept using the
document frequency; i.e., the number of documents in the collection
the concept appears in. The information density of a sentence is
the average weight of all concepts in the sentence. Based on the
user feedback, we increase and decrease the weights of the concepts
yielding refined information density scores. In every iteration, we
induce a sentence ranking and select only the top-k sentences based
on the information density. This strategy introduces some computa-
tion overhead but allows exploitation of collected feedback already
in the sampling process.

Stratified: In the third sampling strategy, we additionally divide
the input sentences into a fixed number of clusters based on sen-
tence embeddings [1]. Each of those clusters is individually ranked
as discussed before. Based on the feedback, more sentences from

Interactive Summarization of Large Document Collections HILDA’19, July 5, 2019, Amsterdam, Netherlands

Figure 3: Number of constraints in ILP in relation to estimated
/ actual runtime for finding the best summary (in seconds).

clusters with better feedback are sampled. This allows dealing with
diverse topics and causes the sampling to initially better explore all
information available (instead of only the frequent concepts).

3.2 Sample Size Estimation
For all the before-mentioned sampling strategies one needs to choose
the sample size as a parameter. This parameter should not be selected
arbitrarily since a too small or too large sample size might have a
negative impact on the overall quality—by not sampling relevant
sentences as well as by changing the runtime of the summarization
procedure which is important to enable the user to give interactive
feedback.

At the core of our system, as discussed before, an ILP solver
is used that maximizes the accumulated weight of all concepts in
the summary for a given summary length (i.e. consists of sentences
mainly containing the highest-rated distinct concepts based on the
user feedback). In order to set the sample size, we use a cost model
to estimate the response time of the system. In future, we will extend
this cost model to enable us to estimate the resulting quality of the
summarization model when using only a sample of a given size.

The main intuition behind our cost model is that each sentence
in the input to the ILP produces additional constraints that have to
be respected for finding the summary in the next iteration by the
solver. Less constraints make it easier for the solver to find a solution
and therefore reduce the computation time. The cost function thus
only depends on the sample size (which directly translates into the
number of constraints) but not the summary length, since this is only
present as a single constraint in the ILP. Hence, different summary
lengths with the same amount of input concepts will still yield similar
runtimes of the summarization system. We verify those findings at
the beginning of our evaluation (Section 4.1).

4 EXPERIMENTAL EVALUATION
4.1 Exp. 1: Sample Size
In a first experiment, we analyze the accuracy of our cost model to
estimate the sample size. As discussed before, the cost function in
Sherlock maps the number of constraints to an estimated runtime.
We use this function to derive the maximum sample size k such
that the runtime stays below a chosen interactivity threshold (e.g.,
500ms). Figure 3 compares the actual runtime of the ILP model with
the estimated runtime of our cost model (blue line). Both show a
Pearson correlation coefficient of 0.96 to 0.97.

Figure 4: Mean recall of bigrams (ROUGE2 metric) for run-
ning the system with 5 different sample sizes (from 10% to full
data) on 615 different data sets (artificial and real data). All ex-
periments use the TOP-K strategy.

Furthermore, another important question is the effect of using a
sample as input to the summarization model. Figure 4 shows the
results of running the summarization procedure on different sample
sizes using the TOP-K strategy (while STRATIFIED behaved similar
in this experiment) over the different iterations (shown on the x-axis)
to collect feedback from users. For collecting feedback, we simulate
users in all our experiments who give perfect feedback to produce
summaries (i.e., users always mark concepts as important if they
appear in the gold summary). As a result, we see that the quality of
summaries produced with only 10% sample size is nearly the same
as for the full data and the mean quality of the system working on a
quarter of the input data is indistinguishable from the mean quality
of the original system while the length of each iteration is only about
20% of the one from the original system.

Another interesting observation is that the sample cannot be arbi-
trarily small—it still has to contain enough sentences to fill the full
summary and the summarizing model should still be able to choose
from different sentences. In our current prototype, we thus select the
sample size based on our cost model such that the desired interaction
threshold is met but the sample size still contains enough sentences
to fill the full summary (i.e., sample size must be larger than the
summary length).

4.2 Exp. 2: Sampling Strategy
In the second experiment, we evaluate the different sampling strate-
gies and their robustness for different kinds of summaries. There are
two important dimensions of textual summaries that have a major
impact on how well a sampling strategy works: The first dimension
is which concepts are included in a summary (i.e., frequent ones
or rare ones). The second dimension is whether the summary is
topically focused (for users who are interested in particular details)
or if it contains a wide range of concepts (for users who want to get
an initial overview).

In order to evaluate our sampling strategies on these different
summary types, we create different summaries (called gold sum-
maries) that follow the above-mentioned properties. To control the
content of the summaries and make sure they still have the syntactic
properties and word distributions of a real text, we use sentences
from the existing summarization corpora DUC06 and DUC07 to
create the gold summaries.1

1https://www-nlpir.nist.gov/projects/duc/data.html

https://www-nlpir.nist.gov/projects/duc/data.html

HILDA’19, July 5, 2019, Amsterdam, Netherlands Benjamin Hättasch et al.

Figure 5: Mean ROUGE2 scores for running the system for 10 iterations with three different strategies (RANDOM, TOP-K, STRAT-
IFIED) on our summaries (MIXED, RARE and FREQUENT from left to right) as well as real data (rightmost plot, original DUC06
& DUC07). 380 different summaries were used per plot. ROUGE2 scores are always between 0 and 1, higher scores are better.

Figure 6: ROUGE2 scores for running the system for 10 itera-
tions on a WIDE summary (left) and mean ROUGE2 scores for
50 artificial datasets with FOCUSED summaries (right).

Below, we first describe the setup for two experiments we con-
ducted and then discuss the results at the end. We fix the sample size
to 20% of the input documents for all different sampling strategies
(RANDOM, TOP-K, STRATIFIED).

Exp. 2a: Rare vs. Frequent: In this experiment, we test the depen-
dence of the sampling strategies on the frequency of the concepts. We
therefore create three different classes of summaries: (1) summaries
with random concepts containing both rare and frequent concepts
(called MIXED), (2) summaries with concepts that appear frequently
(called FREQUENT), and summaries with only concepts that are
rare (called RARE). Furthermore, we use the summaries included in
the original DUC corpora.

Exp. 2b: Focused vs. Wide: In this experiment, we want to test the
sampling strategies on summaries with a rather focused or a wide set
of topics. In order to create those summaries, we use the GloVe word
embeddings [9] and sample sentences where words are uniformly
distributed over the vector space (called WIDE) or sentences where
words are clustered in a certain region (called FOCUSED).
All gold summaries have a length of about 250 words.

Discussion of Results: The results of Exp. 2a (Rare vs. Frequent)
are shown in Figure 5. Again, as before we show the ROUGE2
metric over the different iterations of producing a summary whereas
users provide perfect feedback in each iteration. For the result in
Figure 5, we see that TOP-K and STRATIFIED sampling clearly out-
perform the RANDOM sampling strategy and thus both can be used
to generate high-quality summaries in only a few iterations. More-
over, as expected both strategies work better on the summaries of
types MIXED and FREQUENT and are less effective on summaries
of type RARE since the sampling strategies prefer more important
concepts over less important ones.

Our system also works reasonably well on the original summaries
from the DUC06 and DUC07 corpora, but the scores are much
lower (see right-most plot of Figure 5). Yet this is not caused by
the algorithm or sampling strategies but by the fact that the gold
summaries of the DUC corpora are abstractive and not extractive (i.e.,
summaries are not composed of full sentences of the input documents
but hand-written by users). This is in contrast to the summaries used
for the left three plots of Figure 5 which are extractive, leading to a
higher upper bound for the ROUGE2 metric.

Finally, a clear difference between the TOP-K and STRATIFIED
sampling strategy can be seen in the results for Exp. 2b (Focused vs.
Wide) as shown in Figure 6. Here, the STRATIFIED strategy shows
a clear benefit over TOP-K when used on a WIDE summary (left
plot) instead of FOCUSED ones (right plot) at least in the first few
iterations. The intuition is that STRATIFIED sampling is better able
to include sentences required for the breadth of WIDE summaries.
The reason why TOP-K performs better in the latter iterations is that
the sampling is more efficient (and covers also the desired breadth)
when enough user feedback was collected. In future, we thus want
to look into combinations of TOP-K and STRATIFIED sampling.

ACKNOWLEDGMENTS
This work has been supported by the German Research Foundation
as part of the Research Training Group Adaptive Preparation of
Information from Heterogeneous Sources (AIPHES) under grant No.
GRK 1994/1.

REFERENCES
[1] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes. Supervised

learning of universal sentence representations from natural language inference data.
In EMNLP, pages 670–680. ACL, 2017.

[2] T. Falke and I. Gurevych. GraphDocExplore: A framework for the experimental
comparison of graph-based document exploration techniques. In EMNLP, pages
19–24. ACL, 2017.

[3] D. Glowacka, T. Ruotsalo, K. Konuyshkova, K. Athukorala, K. Samuel, and
G. Jacucci. Directing exploratory search: Reinforcement learning from user inter-
actions with keywords. In ACM IUI, pages 117–127. ACM, 2013.

[4] Z. Liu and J. Heer. The effects of interactive latency on exploratory visual analysis.
IEEE transactions on visualization and computer graphics, 20:2122–2131, 2014.

[5] Avinesh P. V. S., B. Hättasch, O. Özyurt, C. Binnig, and C. M. Meyer. Sherlock: A
system for interactive summarization of large text collections. Proc. VLDB Endow.,
11(12):1902–1905, 2018.

[6] Avinesh P. V. S. and C. M. Meyer. Joint optimization of user-desired content in
multi-document summaries by learning from user feedback. In ACL, pages 1353–
1363. ACL, 2017.

[7] A. Nenkova and K. McKeown. Automatic summarization. Foundations and
Trends® in Information Retrieval, 5(2–3):103–233, 2011.

[8] Y. Park, J. Qing, X. Shen, and B. Mozafari. BlinkML: Approximate Machine
Learning with Probabilistic Guarantees. In SIGMOD, 2019. (to appear).

[9] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word
representation. In EMNLP, pages 1532–1543. ACL, 2014.

	Abstract
	1 Introduction
	2 System Overview
	3 Approximate Summarization Model
	3.1 Sampling Strategies
	3.2 Sample Size Estimation

	4 Experimental Evaluation
	4.1 Exp. 1: Sample Size
	4.2 Exp. 2: Sampling Strategy

	References

