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ABSTRACT
Entity resolution (ER) seeks to identify the set of tuples in a
dataset that refer to the same real-world entity. It is one of
the fundamental and well studied problems in data integra-
tion with applications in diverse domains such as banking,
insurance, e-commerce, and so on. Machine Learning and
Deep Learning based methods provide the state-of-the-art
results. For practitioners, it is often challenging to under-
stand why the classifier made a particular prediction. While
there has been extensive work in the ML community on
explaining classifier predictions, we found that a direct appli-
cation of those techniques is not appropriate for ER. There
is a huge gap between the needs of lay ER practitioners and
the explanation community. In this paper, we provide a com-
prehensive taxonomy of these challenges, discuss research
opportunities and propose preliminary solutions.
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1 INTRODUCTION

Entity Resolution (ER) (a.k.a. record linkage or dedupli-
cation) is a fundamental problem in data integration. Given
a dataset, ER seeks to identify the set of tuple pairs that
refer to the same real-world entity. This has a number of
applications in domains as diverse as banking, insurance, e-
commerce, and many more. An e-commerce website would
like to know if two products from different suppliers are the
same so that they can be listed in the same product page.
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Two banks merging would want to identify and reconcile
common customers.
Traditional approaches for ER operate in two phases:

blocking and matching. Given a dataset D, blocking meth-
ods generate a candidate set C ⊆ D × D that excludes tuple
pairs which are unlikely to match. The matching phase typi-
cally uses a classifier for predicting if a given tuple pair is
a duplicate. Due to its importance, ER has been extensively
studied with state-of-the-art results provided by Machine
Learning (ML) and Deep Learning (DL) based solutions such
as DeepER [5] and DeepMatcher [17]. In this paper, we focus
primarily on explaining the predictions of an ER matcher.
Explanations for ML. Current methods for explaining
predictions of an ML classifier can be broadly catego-
rized [3, 9, 14] as local or global. Local explanations seek
to provide why the model predicted a label for a specific
instance. In the context of ER, a local explanation would
explain why a tuple pair was predicted to be a duplicate.
Common approaches include identifying a ranked list of fea-
tures that contribute towards the prediction as a duplicate
(such as LIME [19]) or as a rule that holds true in the vicinity
of the tuple-pair with high precision (such as Anchor [20]).
Global explanations seek to concisely summarize the entire
model for the user. For example, the global explanation could
summarize an ML model for ER as a set of if-then rules.
Explaining ML Classifiers for ER.While there has been
extensive work on explanations for ML models, they are
often insufficient for explaining matching predictions to an
ER practitioner. We now briefly enumerate the potential
issues and discuss the key dimensions alongwith preliminary
solutions in Section 2.
1. Application (ER) Specific Explanations. Most of the
prior explanation methods are often agnostic to the task and
classifier. While agnosticism to classifier is indeed desirable,
one can generate much better explanations by tailoring it
to the task at hand. This is especially relevant for ER that
has a number of distinctive properties. ER often exhibits a
skewed distribution of labels where non-duplicates often
outnumber duplicates by a factor of 100 or more. Often, sim-
ilarity/distance values between two aligned attributes (such
as customer name in two relations) are used as features.
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Generating explanations using popularly used features/sim-
ilarity functions for ER such as Jaro-Winkler, Levenshtein,
Monge-Elkan would not be easily understandable even for
data scientists, let alone a domain expert.
2. Explanation Templates. Explanations for structured
predictions almost exclusively rely on feature importance
and if-then rules. However, it is desirable to explore other
forms of explanations. Common examples include:

(i) Explanations using tuple pairs whereby we identify
a small number of very relevant tuple pairs from the
training dataset that could be used to explain the pre-
diction of an instance.

(ii) Of course, relevant tuple pairs might not always ex-
ist which leads us to explanations through “sufficient
input subsets” of features [1] whose observed values
are sufficient for the same decision to be reached. By
showing a small collection of tuple pairs that share
these feature subsets, the user could understand the
prediction.

(iii) Counterfactual explanations that describe the smallest
change that could switch a tuple pair from duplicate
to non-duplicate, and vice versa.

3. Explanations for Debugging. Current explanation ap-
proaches focus on two extremes: local or global. Often, the
domain expert is interested in understanding other phenom-
ena that do not cleanly fall in this spectrum. For example, a
domain expert would be interested in failure analysis seek-
ing to understand how/why the classifier fails in certain
circumstances. This could help in debugging the classifier
resulting in better features, training dataset and so on. Sim-
ilarly, a domain expert would be interested in differential
analysis where the scientist seeks to compare and contrast
two models for the same ER problem through the lens of
explanations.
4. Explanation Summarization. Local explanation meth-
ods often provide justification for the prediction of an indi-
vidual tuple pair. However, the dataset could contain millions
of such instances and one cannot expect a domain expert to
go through each of them. Global methods are an alternative
but do not work in many scenarios. It is important to identify
mechanisms to generate “summaries” (such as a report for
a ER practitioner) that concisely details the model predic-
tions. This could either aggregate local explanations of all
relevant tuple pairs or use other novel mechanisms such as
identifying representative tuple pairs.
5. Explanation Scalability. Current explanation methods
are often slow and could take seconds for individual predic-
tions. Running the model on millions of predictions could
take a lot of time even if one uses distributed methods. A

Figure 1: ER Pipeline and Architecture of ExplainER –
Our preliminary version for Explanations for ER.

large number of explanationmethods share many commonal-
ities under the hood such as sample generation and gradient
computation. By using database techniques such as material-
ization and reuse, it is possible to speed up these approaches
by orders of magnitude.

2 BETTER EXPLANATIONS FOR ER
In this section, we discuss key dimensions for improving
explanations for ER, identify interesting research challenges
and propose preliminary solutions. Our ultimate goal is to
design a Python package for explaining ER predictions. We
demonstrate in [4] ExplainER, a preliminary version that
solves a handful of these challenges by leveraging existing
local and global explanation methods. The architecture of
ExplainER is shown in Figure 1.

2.1 Explanations for Skewed Datasets
Typically in ER, non-duplicates outnumber duplicates by a
factor of 100 even after blocking is performed. This label skew
causes one of the fundamental challenges in adapting exist-
ing explanation methods for ML classifiers to ER. A naive
invocation often produces meaningless results. Concretely,
we discuss how this issue affects two popular approaches:
LIME [19] and Anchors [20].
LIME [19] is a model agnostic explanation system that gen-
erates explanations using features ranked based on their
importance. Suppose we are given a tuple pair t that a clas-
sifier labeled as a duplicate. LIME might identify that fea-
tures fi , fj , fk contributed with weightswi ,w j ,wk towards a
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prediction of the pair being a duplicate while features fl , fm
contributes towards the prediction of non-duplicate. It makes
numerous random perturbations of the feature vector for t ,
assigns a notion of similarity for each perturbation based on
its distance to t , runs the classifier on each perturbation and
selecting the K best features using Lasso.

This proposed approach works well for balanced datasets
where invoking the classifier on perturbations provides a
good mix of positive and negative labels. For ER, this ap-
proach would only work for tuple pairs in the vicinity of
the classifier’s global decision boundary such as duplicates
where minor perturbations could result in a prediction of
non-duplicate. However, for non-duplicates which account
for the vast majority of tuple pairs this does not work. Mi-
nor perturbations only results in predictions of more non-
duplicates - so LIME would misidentify the top-K features
and produce an incorrect explanation.
Improving LIME Explanations for ER. There are many
ways to improve LIME explanations. One conservative ap-
proach used by ExplainER [4] is to only use LIME explana-
tions on duplicates or tuple pairs for whom minor pertur-
bations produce a mix of predictions of duplicates and non-
duplicates. Another approach would be to progressively try
larger perturbations till a good mix of predictions is obtained.
This has to be done carefully and requires two changes. First,
we must modify the kernel function such that the weight be-
tween the original tuple pair and the perturbations is based
on both the distance between them and the distance from the
nearest decision boundary manifold. Second, when one in-
creases the perturbation radius, it is possible that one might
straddle multiple decision boundary manifolds. In this case,
we must exhaustively enumerate each of these manifolds,
generate LIME explanations separately for each of them and
aggregate it intelligently.
Anchors [20] are model agnostic explanations that explain
ER predictions using high precision rules (dubbed anchors).
These anchors represent sufficient conditions with high pre-
cision in the vicinity of the tuple pair being explained. We
can immediately see the issue in applying anchors for ER.
Given the preponderance of non-duplicates, one could come
up with a trivial anchor that blindly declares every tuple pair
to be a non-duplicate. For most ER datasets, this anchor will
have a precision of 0.99 or higher!
Improving Anchors for ER. While this approach works
for balanced datasets, it is not appropriate for ER. For im-
balanced datasets, one must use alternative metrics such as
F-score (the harmonic mean between precision and recall).
The key issue is that Anchors relies on precision metric for

identifying useful rules for explanations. However, modify-
ing anchors to identify rules with high F-score is very chal-
lenging. A conservative approach is to limit the explanations
to duplicates or those near the decision boundary. In this sce-
nario, recall is either well-defined or non-zero allowing one
to estimate F-score. While precision has a straightforward
statistical estimator that could be computed from the sam-
ples, designing one for recall is much trickier. Furthermore,
adapting recently developed estimators for recall of ER (or F-
score) for the purpose of explanations is either expensive [6]
or not straightforward [15].

2.2 Templates for ER Explanations
Almost all of the explanation methods for tabular data are
based on feature importances or if-then rules. Feature im-
portance based methods such as LIME are often challenging
to interpret for a domain expert. Part of the reason is that
the features themselves are harder to explain with an alpha-
bet soup of names such as Jaro-Winkler, Levenshtein, and
Monge-Elkan. A typical end user of ER matcher is often a
domain expert from domains such as banking, insurance,
e-commerce, etc. This requires innovation in other types of
explanations. In this subsection, we identify three promising
alternatives and describe simple algorithms for each.
Explanation by Examples. The simplest explanation for
explaining the prediction for a tuple pair t could be very
similar tuple pairs from the training dataset. Since the do-
main expert would have hand labeled these tuple pairs, it
behoves that we use it as part of our explanation. Note that
simply performing nearest neighbor in the feature space is
often insufficient. This is due to the fact that features for ER
are often similarity based. So two different tuple pairs could
both have identical similarity values whereas the underlying
raw tuple pairs might look very different. A simple solution
is to use a sophisticated function for identifying the nearest
neighbor.

The function must rely on four factors whose weights are
set as appropriate. The nearest neighbor must have (i) very
similar feature values and thereby (ii) similar explanation in
terms of feature importances (one does not follow the other!).
Furthermore, the nearest neighbor (iii) must have the same
class label either duplicate or non-duplicate. Finally, (iv) the
aligned component tuples must have similar feature vectors
with each other. Suppose we wish to identify duplicate tuples
between two relations D and D ′. Let the two tuple pairs be
ti = (a,b) and tj = (c,d ) where {a, c} ∈ D and {b,d } ∈ D ′. In
order for (c,d ) to be a good neighbor, the final desiderata (d)
requires that the feature vector between (a,d ) and (c,b) be
very similar. All these constraints will ensure that the chosen
neighbors are similar in terms of the raw values, feature
vectors, explanations and the predicted class label. Of course,
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this constraint is very restrictive but provides a good set
of candidates. One could always relax this requirement by
modifying the weight assigned to some of these component
terms.
Explanation by Sufficient Subsets. It is possible that ex-
planations by examples could fail as it is restricted to the
training dataset. One way to generalize is to identify the
neighbor from both training and testing datasets. Another
way is to look for alternate explanation templates. Sufficient
input subsets are one such mechanism that is closely related
to Anchors. This approach identifies a minimal subset of fea-
tures such that their observed values are “sufficient” [1] for
the classifier to make the same decision for any instance. One
can view this approach as a way to generate a small group
of tuple pairs that all share the same value for a subset of
features and produce the same prediction. For relations with
mostly categorical and numerical attributes, this approach
could be readily implemented. The key challenge is handling
attributes with textual content where a different semantics
for sufficiency must be defined. A simplistic approach would
be to remove all stop words and focus on the words with
large tf-idf values. However, more research is needed to flesh
out sufficient input subsets for ER.
Explanation by Counterfactuals. Intuitively, a counter
factual explanation tries to find the smallest change to the
feature values such that the prediction is changed from dupli-
cate to non-duplicate or vice versa. For example, the model
could say that products X and Y are not duplicates - however,
theywould have been if their weights were the same. Counter
factual explanations are often human friendly [16] and are
an effective tool for debugging classifiers. However, there are
two challenges. First, it is possible that there are multiple pos-
sible counterfactuals for the same tuple pair [16]. However,
identifying the “best” one is quite challenging. The simplest
solution is to simply list all of these and let the human make
the choice. Alternatively, we could limit the number of coun-
terfactuals each attribute participates in which bounds the
number of explanations to the number of attributes. The
second challenge is that perturbing feature values realisti-
cally for a tuple pair is often challenging. Suppose that two
products with weight 1 KG are considered to be a duplicate
but could be made a non-duplicate with a different weight.
Also suppose that the acceptable weight threshold for the
classifier is 0.5 KG (i.e., if the weights are off by more than
0.5 KG, it will be considered as different). A counterfactual
that sets the weight of one product to 1.6 is preferable to one
that sets it to∞. Systematic approaches could be easily de-
fined for categorical and numerical values. We can generate
counterfactuals by cycling through the domain value of a
categorical attribute while using a binary search like idea
for numerical attributes. However, automatically finding the

minimal perturbation for textual data is quite challenging
and requires further research.

2.3 Explanations for Debugging
This is one of the areas where there has been extensive
work from the HILDA community [8, 10, 21, 22] and the DB
community at large [2, 18]. We have made some progress in
extending them to the ER problem. Nevertheless, there are
still a number of important problems relevant for ER waiting
to be investigated.
Debugging Training Dataset. Consider a tuple pair t that
was predicted as a non-duplicate. While using methods such
as feature importance or rules could provide some intuition
as to why, it does not provide a mechanism to “fix” it if it
was wrongly predicted. Often, an incorrect prediction is an
artifact of an incomplete training dataset. Some of the com-
mon problems in the training dataset include: (i) incorrect
labels and (ii) not enough data similar to the tuple t that was
mis-predicted. We consider three important sub-problems
and provide preliminary solutions that are very effective
albeit inefficient.
P1: Are the most important tuple pairs correctly labeled? Sup-
pose that the domain expert has time to validate the labels
of K tuple pairs. Then, we need to identify the K tuple pairs
that have the most impact on the model and validate them
with the expert. Intuitively, we remove the tuple pair from
training dataset, retrain the model and measure the impact
on the prediction.We use Cook’s distance [16] parameterized
by prediction outcome to measure the impact of deleting the
instance on the model parameters. While deleting individual
tuples provides the best results, a natural approach to speed
it up is by clustering the tuple pairs and computing Cook’s
distance for each cluster.
P2: Which training instance(s) caused my tuple pair to be mis-
predicted? This is challenging to do effectively for all possible
ML models. Heuristically, we use knowledge distillation [7]
to compress a blackbox classifier model into a smaller more
interpretable model. Specifically, we use a depth bounded
decision tree for this purpose where the depth is inversely
proportional to the number of tuple pairs the domain expert
is willing to examine. Intuitively, the key idea is to partition
the data using the decision tree such that if a tuple pair is
misidentified, we only need to examine all tuple pairs falling
under the path taken by that instance. It is also possible to
use other models for partitioning such as [10].
P3: Are there sufficient coverage of training instances?We con-
struct OLAP cubes for both the training and test dataset
independently. Then we identify the top-K maximal and
non-overlapping cuboids where the fraction of tuple pairs
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is very different in the training and test cubes. While sim-
plistic, this approach can easily find common problematic
instances such as: (i) lack of relevant training data: identi-
fied when a cuboid in the test dataset has larger number of
tuples than its corresponding cuboid in the training dataset;
This implies that there are insufficient numbers of instances
in the training data corresponding to tuple pairs from the
testing cuboid, and (ii) covariate shift occurs when there is a
difference in the distribution of training and testing datasets.
By comparing corresponding cuboids with large differences,
a domain expert can validate if this discrepancy is acceptable
or expected.
Debugging Classifiers. There has been some interesting
work such as [2] that helps users in tracing model perfor-
mance issues by identifying subsets of data where the model
performs poorly. This method automatically identifies sub-
sets of data that are easy to specify, have non-negligible
impact on ER mode’s F-score (dubbed accuracy in [2]) and
carefully avoid false positives.
Comparing ER Models. Finally, it is important to inves-
tigate other model metrics. For example, a domain expert
would be interested in differential analysis where one seeks
to compare and contrast twomodels for the same ER problem
through the lens of explanations. Without loss of generality,
let model M1 be better than model M2. The key idea is to
differentiate progression (instances where M2 was wrong
andM1 is correct) and regression (whereM2 was right but
M1 was wrong). Often, the improvement is not uniform. One
could extend [2] to identify the subsets of data where M1
dramatically outperforms M2 that provides an easy to un-
derstand explanation as to why modelM1 is better. This is
often more meaningful to the domain expert than abstract
performance metrics such as precision, recall or F-score.

2.4 Explanation Summarization
In this subsection, we describe two ideas incorporated in
ExplainER [4] that leverages prior work. However, there
are a number of interesting research problems to be tackled.
The key issue is that prior explanation methods operate at
two extremes: local or global. While local models provide
granular information, there are simply too many tuple pairs
to inspect. Global models often suffer from loss of fidelity
with original ML model or produces too many rules – often
in the range 30-50 for benchmark ER datasets. Ideally, we
wish to generate a “report” that succinctly summarizes the
predictions such that the expert can validate it.
Representative Tuple Pairs. A simple approach is to iden-
tify K tuple pairs that when presented to the domain ex-
pert, provides a representative overview of the entire model.

These must be chosen judiciously by weighing the local/-
global importance of features. Interestingly, for many feature
importance based methods, the function for computing rep-
resentativeness is submodular. Hence, it is possible to choose
tuple pairs that cover major components (i.e., feature impor-
tances) and are not redundant. We use the submodular pick
algorithm from [19] for such purposes.
MDL Summarization. In many domains such as banks or e-
commerce, individual attributes are often associated with an
OLAP hierarchy. It is possible to generate concise summaries
by using these OLAP hierarchies. Suppose we are given the
top-K most importance features for each tuple pair. This can
be considered as a binary matrix where rows correspond to
tuples while columns correspond to features. A cell for tuple
pair t and attributeA has a value of 1 if thisA is in the top-K
features for t . Given this setting, one can identify a small
set of “regions” defined by the OLAP hierarchy that covers
the entries with value of 1. These regions are human under-
standable as they are defined using OLAP hierarchies and
provide a bird’s eye view of how explanations and tuple pairs
interact. For this purpose, we implemented the algorithm
from [12] in ExplainER.

2.5 Scaling Up Explanation Algorithms
The current generation of local and global explanation algo-
rithms for tabular data are not very scalable. Local methods
such as LIME or Anchors could take as much as few sec-
onds to generate explanations. Similarly, global methods
such as Interpretable decision sets [11] or Bayesian Rule
Lists (BRL) [13] could require as much as few hours to ob-
tain a concise set of rules. Given that ER problems operate
in the realm of quadratic complexity (recall blocking gives
C ⊆ D × D), this could be a formidable challenge. Naive par-
allelization or distributed computing is often insufficient and
requires novel algorithmic breakthroughs. We now briefly
describe some preliminary approaches to speedup popular
explanation methods.
Scaling up LIME. Recall that LIME takes in a feature vector
F for tuple pair t , makes many perturbations of F , applies
the classifier on each perturbation and applies K-Lasso to
identify the most important features. Suppose we have an-
other tuple pair t ′ with feature vector F ′ that is very similar
to t . Intuitively, it must be possible to reuse many of the
perturbations of F for F ′. This reduces the expensive steps
of generating perturbations and then applying the classi-
fier on them. Of course, this notion of materialization and
reuse of perturbations would not be surprising to a data-
base researcher. While intuitive, this approach of retrieving
and reusing appropriate materialized perturbations requires
solving numerous practical issues.
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Scaling up BRL. BRL [13] is a promising approach that pro-
duces rule lists that are accurate and concise. However, the
flexibility is obtained at the expense of computation time.
The key idea to speeding up global methods is to come up
with an appropriate objective function for global models
that could be approximated. In the context of BRL, it already
has an elegant posterior distribution over rule lists that al-
lows principled approximation which dramatically prunes
the search space [23]. Extending this idea to other global
methods for ER is an intriguing research challenge.
Impact of Blocking.An orthogonal approach for scalability
is to simply reduce the number of instances on which the
explanation algorithms are run on. Blocking is a natural
avenue for this as it reduces the set of candidate pairs to be
evaluated by the classifier. An intriguing question is how
does blocking impact explanations? Similarly, is it possible
to devise “explanation aware” blocking where tuple pairs in
the same block would most likely have similar explanations.
In this case, one need to only apply explanation algorithms
on a representative tuple pair from each block.

3 CONCLUSION
In this paper, we argued that there is a large gap and a golden
opportunity between current research on explainability and
the practitioners of entity resolution. We identified a tax-
onomy of interesting research problems and proposed pre-
liminary solutions. While our discussion was anchored on
ER, many of the problems could naturally be extended to
other data integration and database problems. Our proposed
approaches are a promising start but more needs to be done.
Given the oncoming tide of ML in databases, it is impor-
tant that the database community investigate these research
problems and smoothen such transition for practitioners.
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