
Knowledge Graph Programming with a Human-in-the-Loop:
Preliminary Results

Yuze Lou, Mahfus Uddin, Nathaniel Brown, Michael Cafarella
lyzlyz@umich.edu,mahfusu@umich.edu,nthnb@umich.edu,michjc@umich.edu

University of Michigan
Ann Arbor, Michigan

ABSTRACT
In this paper we introduce knowledge graph programming, a new
method for writing extremely succinct programs. This method
allows programmers to save work by writing programs that are
brief but also underspecified and underconstrained; a human-in-
the-loop “data compiler” then automatically fills in missing values
without the programmer’s explicit help. It uses modern data qual-
ity mechanisms such as information extraction, data integration,
and crowdsourcing. The language encourages users to mention
knowledge graph entities in their programs, thus enabling the data
compiler to exploit the extensive factual and type structure present
in modern KGs. We describe the knowledge graph programming
user experience, explain its conceptual steps and data model, de-
scribe our prototype KGP system, and present some preliminary
experimental results.
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1 INTRODUCTION
Knowledge graph programming (KGP) aims to enable extremely
succinct programs. Its core design idea is to allow users to save effort
by underspecifying the program, and to then automatically fill in
missing program details throughmodern data qualitymethods, such
as data integration, information extraction, crowdsourcing, and
so on. User programs make frequent references to entities drawn
from a knowledge graph, such as Wikidata [5] or DBpedia [16]. By
combining program logic with KG references, the succinct source
code provides a clean logical definition of program execution, and
gives the KGP system substantial implicit hints about how to best
fill in missing values.

KGP shares some goals with program synthesis [7, 12, 13, 21]
and ML-assisted programming methods [1, 9, 10] — namely, to
greatly reduce the work done by a human programmer. However,
we focus on efficiently producing program-like artifacts, rather
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Figure 1: The program Fly(Obama | Washington DC | Paris)
can yield a professional-looking animation rendered on a
world map, even though it is a single line.

than producing source code per se. Moreover, our proposed design
relies heavily on methods from the data management literature,
such as relational schema design, data integration, and information
extraction, as opposed to logical solvers.

Knowledge graph programming comprises three steps:

• The knowledge programmer writes a succinct but under-
specified program, using frequent references to entities and
predefined actions in a knowledge graph. A single user-
written knowledge program can potentially be compiled
into multiple target artifacts.

• The target module(s) translates the knowledge program’s
execution into a data scaffold: a set of data slots that must
be filled before a useful software artifact can be generated.
There is a separate target module for each type of target soft-
ware artifact: one for phone apps, one for two-dimensional
animations, one for web apps, and so on. Target modules are
pluggable pieces of code that can expand KGP functionality
over time.

• The data compiler fills in an empty scaffold’s data slots as
accurately as it can. Once populated, the data scaffold can
be transformed into the desired software artifact.

The success of this final data compilation step — to populate a
scaffold of missing values accurately, quickly, and at reasonable
financial cost — is the key to a useful KGP system. The data compiler
makes the difference between a usable software artifact and an
unusable one.

https://doi.org/10.1145/3328519.3329132
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Example — Figure 1 shows a frame from an animation that illus-
trates a plane flying from Washington, D.C. to Paris, France1. The
animation lasts a few seconds and would be suitable for inclusion
in a PowerPoint presentation, or as a segment in a longer video. It
is the result of a one-step user program: Fly(Obama | Washington
DC | Paris).

In this case, the knowledge programmer has used an action (Fly)
from a predefined controlled list and has made casual textual ref-
erences to three entities she assumes are in a backing knowledge
graph: former president Barack Obama, and the cities Washing-
ton D.C. and Paris, France. She has further chosen to compile the
program using the 2DMap target module.

The KGP system has: (1) mapped the programmer’s textual ref-
erences to unambiguous KG entities2 to yield a simple knowledge
program; (2) applied the 2DMap target module to this program to
yield an empty data scaffold; (3) applied the data compiler to fill in
the missing values, in this case mainly via transforming data values
found in Wikidata; and (4) has created the 2DMap animation using
the populated data scaffold.

Design Considerations — KGP saves programmers effort by not
asking them to do much of the work needed to actually generate an
artifact. In the above example, the programmer has not bothered
to explicitly disambiguate the entity references (say, Paris, France
vs Paris, Texas), has not bothered to look up whether those places
actually exist in a dictionary of locations, has not looked up their
real-world latitude and longitude, has not figured out how to map
those latitude and longitude pairs to on-screen pixel locations, and
has not found a bitmap of a plane to illustrate “Fly”. The KGP system
has filled in all of these values without bothering the programmer.

The KGP system has been able to do so because of the many
implicit hints the knowledge programmer has provided, whether
wittingly or not. For example, the two location parameters to Fly()
exist in the back-end knowledge graph, and have been typed with
city information, and have associated lat/long values. Although
the expressivity of the program is limited by the actions that are
available, a large general-purpose library of actions should enable
a wide set of programs. However, it is certainly not the goal of KGP
to be an entirely general-purpose programming language.

Vision— This is a very simple example, chosen because it is simple
and easy to illustrate. However, our ambition for the project is to
produce real pieces of increasingly useful software, which use more
ambitious programming models and more complicated KG entities
and actions. The long-term technical bet behind KGP’s design is
similar to that made by declarative query researchers in the mid-
1970s [3, 19]: that in many cases, software systems can write better
code than humans when provided with a compact spec (SQL /
KGP programs) and substantial background information (database
statistics / knowledge graphs and other sources of evidence). The
core difference between these technical bets is KGP’s focus on
non-performance qualities of the generated program.

1The full animation, plus an example of the user writing the tiny knowledge program,
can be viewed at http://web.eecs.umich.edu/~michjc/fly_kgp.mp4
2In this case, the Wikidata KG: entities Q76 (Barack Obama), Q61 (Washington, D.C.),
and Q90 (Paris, France)

Organization — The remainder of this paper is organized as fol-
lows. We describe a detailed user interaction in Section 2. In Sec-
tion 3 we describe the KGP intertwined execution and data models,
and describe the data compiler in Section 4. In Section 5 we describe
our prototype software system. We describe some preliminary ex-
periments in Section 6. Finally, we cover related work in Section 7
and conclude with a discussion of future work in Section 8.

2 USER EXPERIENCE
In this sectionwe expand upon the simple example from above. First,
however, some concrete background information on knowledge
graphs is useful.

2.1 Knowledge Graphs
A knowledge graph (KG) is a graph-structured database that aims
at universal coverage within a target domain. Examples covering
general-interest data includeDBpedia [16],Wikidata [5], YAGO [18],
KnowItAll [6], and industrial projects such as Google’s Knowledge
Graph and Microsoft’s Satori. More narrow topics include Mu-
sicBrainz, GeoNames, and UniProtKB. Knowledge graphs are used
today to power structured search results in web search engines
(providing the "right-hand entity pane" for many search engine
queries) and to answer questions in voice assistants.

KGs may be queried using a variety of tools, including graph
database systems, but for most projects today the KG’s most salient
quality is its data quality, not the query characteristics it might
imply. Knowledge graphs generally comprise:

• A set of entities, each with a unique identifier. For example,
Q76 in Wikidata refers to the 44th President Barack Obama.

• For each entity, a set of property/value pairs. Properties
also have unique identifiers. For example, the date of birth
property in Wikidata is P569. Values can be either constants
(“4 August 1961”) or references to other entities in the KG.

• A set of types that organize the entities. In some knowledge
graphs, type information is treated as a special case, and in
others it takes the form of a particular property. For exam-
ple, in Wikidata the property P31 (“instance of”) communi-
cates type-like information. In Wikidata, entity Q76 (“Barack
Obama”) has a P31 (“instance of”) value of Q5 (“human”).

The number of entities and properties varies across KGs. As of
this writing, the Wikidata KG has 55,177,813 unique entities, and
about 3,000 unique properties [23].

KGs have been used for question answering and search applica-
tions, and as inputs to machine learning pipelines. We are unaware
of any previous use of KGs in programming settings.

2.2 Simple Example
Let us return to the simple program from Figure 1 and discuss the
three steps in more detail: writing the knowledge program, running
a target module, and executing the data compiler.

2.2.1 Writing the Knowledge Program. All of the primitives in this
program — the action itself, and the three parameters — are drawn
from knowledge resources that the KGP system has access to. The
entities are drawn from one of the widely-available knowledge
graphs; a good library of actions does not yet exist, but must be

http://web.eecs.umich.edu/~michjc/fly_kgp.mp4
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Figure 2: A user canwrite knowledge programs that initially
contain ambiguous textual references to entities in a back-
ing knowledge graph. The KGP programming environment
uses autosuggest to force users to disambiguate the refer-
ence prior to execution.

constructed and published for this system. The user can simply
assume that in the vast majority of cases, the KGP system knows
about the actions and entities she wants to include; she does not
have to look them up prior to writing code.

The example here is chosen with simple and well-known entities,
but KGP systems can easily include access to more specialized entity
sources, such as organization-specific LDAP directories, or product
inventories.

The KGP interface maps user-entered strings to candidate enti-
ties as the user types, and requires strings to be mapped to unam-
biguous KG entities before the program can be completed. Figure 2
shows the programmer console interface that forces this disam-
biguation. Of course, textual reference disambiguation in the gen-
eral case is an extreamely challenging problem, albeit one that has
enjoyed a substantial amount of research attention. For the time
being, we believe a combination of interactivity and user judg-
ment working in a "human-in-the-loop" fashion will allow us to
sidestep most of the hard technical issues that usually surround
disambiguation.

This program consists of a single action, but in general knowl-
edge programs can comprise multiple actions, executed in multiple
steps. Executing a step in the knowledge program appends a row
to a special table called ProgramState; this row includes the step
number, as well as any facts that are yielded by executing the step.
There is a namespace of possible facts shared by all KGP actions.
Running the knowledge program from Figure 1 yields the simple
ProgramState table seen below:

Step Facts
INIT At(Q76, Q61);
1 At(Q76, Q90); Fly(Q76)

2.2.2 Running the Target Module(s). After the knowledge pro-
gram has run and has yielded a ProgramState table, the chosen
target module(s) generates a data scaffold. The data scaffold is a
table where each row describes a single-action transition in the
ProgramState table. The scaffold contains as many rows as the
target module decides to add, and has columns that are particular
to the combination of ProgramState facts and the target module(s).
The target module may not be able to fully populate the table with
useful values, but once it is populated, generating the user’s desired
software artifact is straightforward. An example for a 90-frame
2DMap animation of our program is seen below:

Figure 3: A frame from a 2DIllustration rendering of the
same Fly(Obama | Washington DC | Paris) knowledge pro-
gram, rendered without any human attention at the data
compilation stage.

prevStep curStep FrameNum Q76-lat Q76-lon ...
INIT 1 0 38.90 -77.04 ...
INIT 1 1 ... ... ...
... ... ... ... ... ...
INIT 1 88 ... ... ...
INIT 1 89 48.86 2.35 ...

Imagine the user instead chose to use the 2DIllustration target
module, which generates more figurative “educational cartoon” to
illustrate Obama’s trip. A frame from such an artifact is shown in
Figure 33. The data scaffold that arises from the 2DIllustration
target module is potentially much more challenging to populate
than the one described above; for example, we need to choose
images to represent each location, as well as how to place them
relative to each other onscreen.

Note that while 2DMap and 2DIllustration are well-matched
to our Fly() action, they are general-purpose modules. (For exam-
ple, we are experimenting with rendering TCP/IP-like code using
2DIllustration.) They are capable of rendering any knowledge
program, though of course some programs would be poor choices
for these targets. Like the templates that accompany PowerPoint
decks or WordPress content, certain target modules will be better
suited to certain kinds of knowledge program.

2.2.3 Executing the Data Compiler. The data compiler’s role is to
fill in the data scaffold generated in the previous step. This task is
easy in the case of the 2DMap scaffold: using default KG values for
city locations — and simply interpolating Obama’s position over
multiple frames — will yield a good-looking result.

It is more difficult in the 2DIllustration case. The compiler
has identified fairly high-quality images to identify the relevant
entities (Obama and the two cities), but the initial animation is
crude: Obama simply slides from left to right. Figure 4 shows an
example screenshot of a crowdsourcing data entry page that the
data compiler can generate; the crowdsourcing worker can modify
the city’s relative position and size onscreen. A better data scaffold,
with an improved data compiler, could provide animation details,
such as ease-in and ease-out or an animated body for Obama.

The data quality burden placed on the data compiler may initially
seem unreasonable, but consider the massive amount of implicit evi-
dence that the programmer has provided. Thanks to the knowledge
graph, we know that entity Q76 (Barack Obama) is a human being,

3The full animation can be seen at http://web.eecs.umich.edu/~michjc/obama_2d_
illustration.mov

http://web.eecs.umich.edu/~michjc/obama_2d_illustration.mov
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Figure 4: A web app interface that is executed as part of the
data compiler. It asks a crowdworker to supply useful data
values that are then integrated into the target artifact.

and so the Fly() action in the 2DMap scaffold should be rendered us-
ing an airplane rather than with explicit wings. We also know that if
any other human has been previously illustrated with the Fly() ac-
tion (say, entity Q6279, Joe Biden), we can likely reuse those filled-in
values for the data scaffold. Finally, we know from KG information
that the two cities are distant from each other, and so their bitmaps
should be drawn far apart on the screen in 2DIllustration. KGP’s
entity-centric programming model is designed to maximize this
implicit evidence about desired data scaffold values.

Although this example is simple, it shows the exciting possibili-
ties of knowledge graph programming: programs that are extremely
simple and easy to write, nonetheless made into high-quality ar-
tifacts using modern advances in data quality methods. The last
few years have shown that the “data quality improvement curve”
is a good one for KGP to exploit. But in case those methods are in-
sufficient, the programmer is at least left with a partially-complete
artifact that can be improved with further direct effort.

2.2.4 Other Programs. Finally, although we only described a one-
step, one-action, straight-line program in this example, the general
KGP architecture applies equally well to multi-step, multi-action
programs, and to non-straight-line programs. For example, imagine
a program that describes the actions a new employee must take
during the first day of work. She must:

(1) Fill in a retirement savings election form
(2) Submit it to a company official who checks it for mistakes
(3) If there are no mistakes, the form is electronically submitted

to a financial company, which sends the employee a receipt
(4) If there are mistakes, the official returns the form to the

employee to be corrected
The logic here is simple, and could use basic actions like

EnterInformation(), Transmit(), Check(), and Return(). The

Figure 5: The KGP execution pipeline.

Figure 6: Incremental version of KGP execution.

entities — the employee, the retirement form, the company official,
and the financial company — all likely exist in either a public knowl-
edge graph or in the company’s LDAP server. And once this short
knowledge program is written, it can be compiled into a range of
useful software artifacts: an informative video during employee
on-boarding, a textual TODO list for the company official, and a
series of web apps that enforce the document and receipt handling.

We describe the multi-action execution model below.

3 EXECUTION AND DATA MODEL
The above example illustrated a simple “batch” mode in which
the entire logical KGP program can be run to completion — and
the corresponding ProgramState table constructed — prior to any
target module or data compiler execution. Figure 5 summarizes
this overall execution flow of writing and running a KGP program.
However, in cases where the knowledge program has conditional
execution, or requires human input for execution, straight-line
batch execution is not possible. Instead, the incremental execution
scenario interleaves knowledge program execution, target modules’
scaffold generation, and data compilation.

Figure 6 shows our incremental execution model. Because rows
in the data scaffold always refer to a single pair of states in
ProgramState, such as the transition from INIT to step 1, we do
not have to wait until the end of knowledge program execution —
that is, the full completion of the ProgramState table — in order
to invoke the target module.

Instead, we repeatedly:
(1) Run a single step from the knowledge program, yielding a

single new row in the ProgramState table
(2) Run the user’s chosen target module(s), yielding zero or more

rows in the empty data scaffold, all with the same prevStep,
curStep pair.

(3) Apply the data compiler to these new rows
(4) Invoke the artifact using the newly-populated data

4 THE DATA COMPILER
The data compiler is the most technically challenging part of our
system and its success determines whether the artifacts produced



Knowledge Graph Programming with a Human-in-the-Loop: Preliminary Results HILDA’19, July 5, 2019, Amsterdam, Netherlands

Human Contributions

Direct programmer specification
Reusing previous values from same user
Log analysis (reusing values from other users)
Crowdsourcing
Implicit Relationships

Entities with same KG type likely share values
Entities in same action slot position likely share values
Entities in similar actions (e.g. Walk() and Run()) share values
Entities with similar target module roles likely share values
External Resources

Different KGs (e.g. Wikidata, DBpedia, Open Linked Data)
External structured DBs
Information extraction from external text
Data fusion and integration

Table 1: Sources of data compiler evidence

are good or bad. We aim to build a data compiler using two basic
design principles:

First, the data compiler can use any data quality mechanism it
chooses, including information extraction, data integration, crowd-
sourcing, and so on. For example, consider a case where a user
writes a program that shows the mountains conquered by a famous
climber: Mount Everest, Mount Kilimanjaro, and so on. It would be
reasonable for the 2DIllustration target module’s data scaffold
to require height information, so the mountains can be properly
rendered on-screen. If needed, the data compiler can obtain this
information by building an information extractor and applying
it to general web text. Alternatively, it could try to integrate in-
formation drawn from an external geographic database, such as
MONDIAL [20].

Second, the system and programmer provides the data compiler
with multiple overlapping sources of weak evidence about the de-
sired data values. Those sources of evidence include usage logs,
crowd annotations, data constraints, standardized datasets (such
as the above MONDIAL database), and others. The evidence can
be divided into 3 major parts: Human Contributions, Implicit Rela-
tionships and External Resources. Some possible examples of such
evidence can be seen in Table 1.

Human Contributions represent the portion of usable data from
the subjective effort of human beings. The most significant one
in this category is crowdsourcing. To take a simple example, a
company can ask crowd workers to fill in missing property values
for entities in the knowledge program.

Implicit Relationships represent the source of evidence com-
ing from abundant correlation among properties that can be used
to impute missing values or improve existing values. Take the
2DIllustration rendering of the Fly(Obama | Washington DC
| Paris) as an example, Washington DC and Paris are both in-
stances of "Q515: city" in the Wikidata KG, while Obama is an
instance of "Q5: human". The KGP system can infer that entities of
the same type are likely to have the same value for some properties.

Here, the system infers that the two cities should be rendered in the
same image size for the 2DIllustration target module. Therefore,
Washington DC and Paris have the same size while Obama does
not in Figure 3.

External Resources play an important role in the KGP system.
KGs are the starting point of of the KGP system and usually contain
lots of useful data. Other than KGs, the data compiler should also
be able to grab information from LDAP servers, standard JSON data
feeds, standard taxonomies and ontologies, and even unstructured
text processed by information extraction tools.

5 SYSTEM PROTOTYPE
Our current KGP prototype is written with its core execution engine
in Python, and user interface elements written using HTML and
JavaScript. It uses Wikidata as its backing knowledge graph, plus a
small library of actions, including Walk(), Fly(), Transmit(), and
others. It currently implements two useful target modules (2DMap
and 2DIllustration), as well as a couple of modules used for
program debugging. We have implemented both straight-line and
conditional event-driven execution models.

In addition to writing KGP programs in a file, the user can write
them using an interactive console, as pictured in Figure 2. This con-
sole allows the user towrite programs that are reflected immediately
onscreen. The user also has access to a set of “metacommands” that
control the current set of target modules, whether the KGP program
should be restarted, etc.

The system’s data compiler currently draws on values from three
sources: the background KG, estimates from the target modules,
and crowdsourced inputs. The crowdsourcing interface can be seen
in Figure 4. A user (whether the programmer or not) can use this
tool to provide new scaffold values, and thereby influence the target
software artifact.

6 PRELIMINARY EXPERIMENTS
Our current prototype has a working interface and execution model,
but we are still building out a rich set of actions, target modules,
and data compilation techniques. As a result, our preliminary ex-
periments focus on the knowledge programmer experience, in par-
ticular: can the console system easily disambiguate programmer
entity references without too much programmer effort? If this dis-
ambiguation process is extremely burdensome for the programmer,
then users will abandon the KGP framework before we even get
to tackle more ambitious programs or the technically-challenging
parts of the data compiler step.

We examined the interactive console’s diambiguation system on
two real-world data sets: (1) 100 city names, sampled from 385 of the
largest cities in the United States; and (2) 100 person names, sampled
from a list of 11,341 prominent people in world history [24].

We ran the KGP console entity-disambiguation tool on all the
names from our test sets. We also ran the search for people with
only their first names to test how the system reacts with ambiguous
input. The console uses information retrieval-style methods to rank
all entities in the backing knowledge graph, based on the user’s
input string; it shows the top-10 entity guesses.

We measured the percentage of console suggestions that have
the correct Wikidata entity as the number-1 hit, the percentage of
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% top-1 hit % top-10 hit Avg rank
Cities 84.14 98.78 1.15
People (full name) 91.9 92.9 1.01
People (first name) 9.1 25.3 4.36

Table 2: Experimental results

console suggestions that have the correct Wikidata entity in the
top-10, and the average rank of the correct entities of those that
are in the top-10.

The results are shown in Table 2. We see that the system is
very effective when the user provides a full text input, even in
the challenging People category4. This is especially notable when
considering that many individuals in the test set would be consid-
ered obscure for many users. Partial input is generally not effective
(consider using the first name John) but providing more textual
evidence is likely not a challenge for the programmer, and is akin
to simply providing a longer web search string.

7 RELATEDWORK
There are several broad areas of related work.

7.1 Program Synthesis
There has been a substantial amount of recent interest in program

synthesis, the task of automatically writing source code that yields
a program that matches a user-provided specification[4, 17]. Al-
though most of this work has taken place in the programming
languages community, there has also been some activities in data
management. The most successful artifact to come from program
synthesis work is likely the FlashFill [11] feature in Microsoft Excel,
which synthesizes small data extraction programs in response to
user-provided examples. Program synthesis shares with knowledge
graph programming a goal of reducing the amount of human work
necessary to accomplish a programming task.

Program synthesis efforts vary widely in the languages they tar-
get, the format of the user’s specification, and the kinds of programs
they generate. However, they generally share an emphasis on (1)
generating short code snippets (2) using logical solver mechanisms
(3) yielding entirely correct programs. In contrast, knowledge graph
programming (1) does not generate much or any traditional source
code, (2) employs data quality mechanisms from the data manage-
ment, machine learning, and crowdsourcing communities [15], with
an aim of (3) creating programs that can be “better” or “worse” but
are always correct.

7.2 Domain-Specific Languages
Research in domain-specific languages (DSLs) attempts to build
programming languages that are targeted exclusively for particular
program types, enabling both succinct source code and deeper
semantic information that can be used at optimization time [2, 22].
Each new DSL requires a new language and runtime infrastructure,
though the burden can be reduced by using a DSL toolkit.

4The Wikidata KG contained 4,378,742 human-typed entities at the time of this
experiment

Knowledge graph programs are general-purpose; there is no
need for a new language with new programs for every new domain.
However, there is some new infrastructure required for each output
type, in the form of target modules. Further, the performance of
the data compiler will potentially differ for each new module.

7.3 ML-Assisted Programming
There has been a very recent set of papers that use machine learn-
ing methods to assist in writing programs [1, 8–10]. One well-
known effort is the DeepCoder project [1], which uses a trained
artifact to guide exploration of a program synthesis space. Another
is Kraska, et al.’s work to learn novel database index structures
using deep neural network methods [14]. This area of work is very
new and heterogeneous, making it difficult to summarize right now.
Nonetheless, knowledge graph programming is distinctive com-
pared to most of these efforts in (1) its use of a clear programming
language and model that non-ML experts can write, and (2) its abil-
ity to use off-the-shelf data quality tools during data compilation (as
opposed to more bespoke neural networks or other architectures).

8 CONCLUSIONS AND FUTUREWORK
In this paper we have introduced knowledge graph programming, a
framework that aims to dramatically increase programmer produc-
tivity by exploiting recent advances in data quality methods. This
work is extremely preliminary, and there is a huge amount of future
work. Two especially important areas include (a) the data compiler,
and how effectively it can fill in missing values at a certain human
effort cost, and (b) the expressiveness of future programs.
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