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ABSTRACT
Data scientists frequently transform data from one form to
another while cleaning, integrating, and enriching datasets.
Writing such transformations, or “mapping functions" is
time-consuming and often involves significant code re-use.
Unfortunately, when every dataset is slightly different from
the last, finding the right mapping functions to re-use can
be just as difficult as starting from scratch. In this paper,
we propose “Link Once and Keep It" (Loki), a system that
consists of a repository of datasets and mapping functions.
It uses this repository to relate new datasets to datasets it
already knows about to help data scientists to quickly locate
and re-use mapping functions built for previous datasets.
Loki represents a first step towards building and re-using
repositories of domain-specific data integration pipelines.
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1 INTRODUCTION
Translating data values from one representation into an-
other is a common task in data science. For example, in data
integration, data scientists map multiple datasets into a com-
mon representation, starting with a set of correspondences
between attributes. A correspondence can be a simple one-
to-one mapping or a translation between units (celsius vs
farenheit), measurement techniques (axial vs oral), formats
(2-letter country code vs full name), and much more. Simi-
larly, in data enrichment, data scientists enhance a dataset
by mapping in supplemental attributes or performing table
joins [10] to augment the dataset, for example by supple-
menting location data with population statistics or weather
information.

Unfortunately, every new dataset brings with it a minefield
of special cases, making it difficult to fully automate data
mapping. In this paper, we present “Link Once and Keep
It” (Loki), which takes a lighter-weight, human-in-the-loop
approach: Instead of automatically mapping attributes, Loki
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helps the data scientist find and re-usemapping functions she
created in the past. For example, once she writes a function
mapping zip (postal) codes to states, she should be able to
re-use that function on any datset with a zip code attribute.

Example 1.1. Alice the environmental health scientist is
analyzing data gathered from several dozen research labs.
While the data being collected by each lab is similar, each is
subtly different. For example, one lab might measure blood
ironwith a serum iron test, while anothermeasures it through
a serum ferritin test. These measurements are not directly
comparable, but can be easily translated. Alice has already
mapped the datasets into a common schema, but needs to
bring in data from a brand new lab to her analysis. Normally,
she would either have to manually write the code to map
this new dataset in, or manually search through her prior
work to find mapping code that she can re-use.

We formally define “type-mapping search” as the problem
of building (from a repository of mappings) a composite map-
ping that translates attributes from one table to an attribute
of another table. Loki treats type mappings as first-class citi-
zen mappings [1]. Loki assumes that mappings defined on a
set of attributes also apply to attributes that are similar or
“unionable.” To this end, Loki builds on prior work in table-
union search [9], which allows users to search a repository
for tables with unionable attributes. Our first contribution in-
volves supporting numerical attributes in table-union search,
through the Kolmogorov-Smirnoff test [7]. However, the
source data may also need translation (e.g., °F to °C) or en-
richment (e.g., demographic information for spatial data).
Our second contribution is a baseline algorithm for building
such sequences of mappings by exploring the combinatorial
space of possible sequences of mappings in a forward and
greedy manner. To this end, Loki represents a first step to-
wards building and re-using repositories of domain-specific
data integration pipelines.

2 PROBLEM DEFINITION
Semantic types [3] identify contextual details of an attribute,
like measurement units (Celsuis), or its role in a datasets,
like a patient’s blood iron concentration. To integrate two
datasets, their attributes need to be mapped into schemas
of matching semantic types. A type mapping is a query that
transforms a collection of attributes in a collection of source
tables into the semantic type of one attribute of a target table
or schema.

Example 2.1. Alice’s new dataset includes subject informa-
tion like street address, city, body temperature in Fahrenheit,
and blood iron concentration taken using a serum feratin
test. Her analysis needs demographic information, body tem-
perature in Celsius, and blood iron concentration on the

serum iron scale. She poses three type-mapping queries, one
for each target attribute. Loki finds a mapping she previ-
ously used to translate temperatures, and assembles a new
mapping from previously developed mappings for geocod-
ing street addresses, and for looking up demographics given
GPS coordinates. She has not yet written the required iron
concentration mapping, and will need to do so now.

We assume that we are given a universal schema and a
set of type mappings (e.g., created manually during prior
tasks). Data tables in the Loki repository are subsets of this
universal schema.

Definition 2.2 (Loki Repository). A Loki repository
⟨A,R,M⟩ is a set of attributesA = {A1, . . . ,AN } called the
repository’s schema, a set of relations R ∈ R with schemas
drawn fromA (i.e., sch(R) ⊆ A), and a set of type-mappings
m ∈ M : ⟨S1, . . . , Sk ⟩ → T from a tuple of source attributes
(Si ∈ A) to a target attribute (T ∈ A).

Our goal is to map the attributes of some source relation
into a target schema T ⊆ A. Without loss of generality, we
consider each target attribute T ∈ T individually: For each,
we need to find a sequence of type-mappings that can be
iteratively applied to the source to obtain the target.

Definition 2.3 (Valid Mapping / Sequence). Amappingm :<
S1, . . . , Sk >→ T is valid for a schema S ⊆ A if and only if
the mapping’s source attributes are a subset of the schema
(i.e., ∀i ∈ [k] : Si ∈ S). We call sequence of mappings
M = {m1, . . . ,mℓ} valid for S if the source attributes of
each element of the sequence includes only attributes from
the schema and any preceding target attributes (i.e., M is
valid for S iff ∀i ∈ [ℓ] :mi is valid for S ∪

(⋃
1≤j<i Tj

)
)

A type-mapping search attempts to find a valid sequence
of mappings that ends with a specified target attribute.

Definition 2.4 (Type-Mapping Search Problem). Let
⟨A,R,M⟩ be a Loki repository. A type-mapping search
query is a pair q =

〈
Sq ,Tq

〉
of source attributes Sq ⊆ A

and target attribute Tq ∈ A − Sq . A sequence of mappings
M = {m1, . . . ,mℓ} (where mi ∈ M) answers the query if
M is valid for Sq and Tq = Tℓ . M is a minimal answer if no
element can be removed while preserving both properties.

In real-world use, source attributes may not yet exist in
Loki’s schema (i.e. Sq * A). Thus, to answer a type-mapping
search query, we need to map SQ into A, and find a minimal
answer.

3 SYSTEM OVERVIEW
We subdivide the high-level goals of type mapping search
into two major challenges: (i) Attribute Resolution: Mapping
the source attributes of Sq into the repository’s universal
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schemaA, (ii) Type-Mapping Search: Finding a valid mapping
sequence that can be iteratively applied to Sq to construct
target attributes. Loki considers two kinds of mappings be-
tween attributes: (i) declared mappings explicitly translat-
ing between attributes, and (ii) inferred mappings between
unionable attributes.
Example 3.1. Alice’s new dataset, illustrated in Figure 1,

includes street address (S1), city (S2), body temp. in °F (S3),
and serum feratin (S4). She needs average income (T1), body
temp. in °C (T2), and serum iron (T3). Loki determines that S3
is unionable with a previously imported temperature (A3),
adding an inferred mapping through which Alice’s existing
temperature conversion becomes valid. Similarly, inferred
mappings relate S1 and S2 to the geocoder’s expected inputs.
Loki had already inferred mappings between geospatial co-
ordinates in existing datasets (A6 andA7), connecting the de-
mographic lookup. There is no mapping for the serum feratin
scale (S4), but Loki mistakenly equates it with a hemoglobin
test for iron (A5), which has mappings both with test temper-
ature (A4) and without. Loki presents Alice with potential
mappings, and she decides whether to re-use or adapt an
existing mapping, or whether to write a new one.

3.1 Attribute Resolution
Attribute resolution discovers pairs of unionable attributes
Am and An and creates inferred mappings between them.
NL-Unionability has previously been studied [9] in the con-
text of non-numerical (i.e., text-typed) attributes through
the natural language association of data values. To evaluate
NL-unionability, an attribute is represented as the empirical
mean and covariance of the embedding vectors of its values.
These vectors are generated such that the semantic similarity
of two data values is translated into the similarity of their
embedding vectors, which can be evaluated by angular dis-
tance measures. NL-unionability assumes two attributes are
unionable if they are samples of the same Gaussian distribu-
tion on embedding vectors. Hotelling’s T-squared test gives
the NL-unionability score using the mean and covariance of
the embedding of pairs of non-numerical attributes [9]. We
now generalize unionability to numerical attributes.

Unionability of Numerical Attributes. To evaluate union-
ability of two numerical attributes, we use the two-sample
Kolmogorov-Smirnov test over each pair of attributes. Intu-
itively, the test judges whether two samples of data are the
same by estimating the likelihood that differences between
their empirical distribution functions are due to random
chance. For two numerical attributesAn andAm , we derive a
KS-unionability scoreU (An ,Am) ∈ [0, 1] as follows. We first
compute a distance score D(An ,Am) for the two attributes as
the maximum distance between their empirical distribution
functions Fn and Fm respectively: D(n,m) = maxx (Fn(x) −
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Figure 1: Example query to map Sq to targets T1, T2, T3

Fm(x)) If the samples are drawn from the same distribution,
we expect the distance score to asymptotically approach zero
for larger samples. Accordingly, the Kolmogorov-Smirnov
test sets a confidence threshold α based on an attributes
sample size using α = 1.63

n
1
2
. Two samples are distinct if

D(An ,Am) <
1√
|An |

·

√
−ln(α2 ) ·

1+ |An |

|Am |

2 [7]. To define the

unionability score, we invert the formula for α to compute
the probability (p-value) thatAn andAm are random samples
from the same distribution, given D(n,m).

U (An ,Am) = e
−2·|An | |Am |·D(An ,Am )2

|Am |+|An |

3.2 Type-Mapping Search
An inferred mapping ⟨S1, . . . , Sk ⟩ →m ⟨A1, . . . ,Ak ⟩ resolves
attributes S1, . . . , Sk to their unionable attributes A1, . . . ,Ak .
Suppose X and Y are sets of attributes. The set X is mapped
to Y if we can find one-to-one mappings between their
attributes. The resolution score of a one-to-one mapping
⟨Ai ⟩ →m

〈
Aj

〉
, namely res(m), is the unionabiliy score

U (Ai ,Aj ). A mappingX →m Y is defined as an alignment C :
X → Y that is a set of one-to-one mappings ⟨Si ⟩ →m′

〈
Aj

〉
,

where Si ∈ X and Aj ∈ Y . We evaluate an alignment C by
the joint unionability of mapped attributes in the alignment.

UC(X ,Y ) = ΠSi→Aj ∈CU (Ai ,Aj )

Given attribute setsX andY , we define the resolution score of
mapping X →m Y (res(m)), as the unionability of the align-
ment that has the highest unionability, res(m) =maxC(UC).
Note that declared mappings do not need attribute resolution,
so we fix their resolution scores to be one. We define the reso-
lution score of mapping sequenceM = { m1, . . . ,mℓ } as the
product of individual scores (i.e., res(M) = Πmi ∈Mres(mi )).
Given a Loki repository ⟨A,R,M⟩ and a query q =

〈
Sq ,Tq

〉
,

our goal is to find the valid mappingM = {m1, . . . ,mℓ} from
Sq to Tq with the highest mapping score. As shown in Fig-
ure 1, an answer starts with inferred mappings from Sq and
ends with target Tq
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Figure 2: p-values for each pair of columns.Higher val-
ues indicate greater similarity (i.e., H0 is that columns
are sampled from the same distribution).

We solve the type mapping search problem with a greedy
forward search algorithm. The search starts with N = {Sq}
and at each step, it ranks mappings on any subset N ⊂ N
by resolution scores and applies the mapping with high-
est resolution score on N. Every time a valid mapping
mi : ⟨A1, . . . ,Ak ⟩ → Aj is applied we update N = N ∪ Aj .
Suppose at step t the sequence of mappings is {m1, . . . ,mt }.
If no valid mapping can be applied on N and Tq < N, the
algorithm backtracks to {m1, . . . ,mt−1}, updates N accord-
ingly, and applies the valid mapping with the second highest
mapping score and so on. The search terminates when search
succeeds (i.e., Tq ∈ N), a maximum number of search steps
have been taken, or the search space is exhausted.

To speed up search we leverage heuristics based on exist-
ing workloads and type mappings in Loki repository. The
first heuristic is a threshold on the attribute resolution scores.
We only consider the attribute mappings that have union-
ability score above a threshold. Groups of attributes co-occur
as inputs to mappings in successful workloads. The second
heuristic is to form hyper attributes which are partitions of
attributes in A and Sq that often form inputs of mappings
collectively. Another source of complexity for the search is
the large number of sequences of mappings to be considered.
Some declared mappings are often applied in a sequence.
These sequences can be reused for later workloads. The sec-
ond heuristic is hyper mappings; sequences of mappings with
high resolution scores, extracted from successful search iter-
ations, and applied atomically. For example, in Figure 1 the
sequence {m2,m5} is a hypermapping.

4 EVALUATION
As a proof of concept, we implemented KS-unionability de-
scribed in Section 3.1. We evaluated the test on a collection
of 53,953 numerical attributes with at least 50 distinct values
drawn from 499 of the open datasets used in [9]. Figure 2
plots a CDF of p-values (i.e., U (A1,A2)) for KS tests for two
trials. The Same trial uses a synthetic ground-truth dataset
created by randomly splitting every attribute column into
two parts A1 and A2. Nearly 30% of attributes are an exact
match to themselves and 70% of attributes have a unionability
score of 0.7 or higher. TheCross trial tests the corresponding
false positive rate, comparing 22 million distinct attribute
pairs sampled uniformly at random from the numerical test
attributes. Virtually no attributes are an exact match, roughly
80% of attributes have a unionability score of 0.7 or lower,
and unionability scores are generally significantly lower than
for the true matches. This indicates that KS-unionability is a
reliable metric for finding matching attributes.

5 RELATEDWORK
Attribute Resolution - For attribute resolution, Loki builds
on existing work in Query Unionability [9]. Prior work fo-
cuses primarily on unionability of string and enumerable
data, using word embeddings to discover related attributes,
while Loki adds support for numerical attributes. Resolv-
ing numerical attributes has been previously explored [2, 5],
though prior work relies on prose to contextualize the num-
bers. Attribute resolution is also analogous to semantic type
detection [3], although Loki considers pairwise similarity be-
tween attributes rather than trying to map attributes into a
common taxonomy [4]. This difference allows Loki to more
easily adapt to new and unexpected domains.
Type-Mapping Search - Type mapping can be thought of

as a generalized form of Joinability search [11], which has
also been explored in the context of touch [6] and natural
language interfaces [8]. Moreover, existing linkage naviga-
tion work are concerned with single attribute joins [12]. The
most significant difference from this prior work is the sheer
size of the search space — any valid sequence of mappings
is fair game. By contrast, prior scalable joinability searches
typically only need to traverse one hop [6, 11] or (e.g., [8]
only searches the foreign key references of a schema).

6 FUTUREWORK
Our next step is to incorporate source priors into resolution
scores. Heuristics such as increasing attribute weighting for
mappings within base files increase our ability to expand
from the single table assumption of Sq to include table joins,
and multiple Tq . While attribute search is already paralleliz-
able, for larger data sources we can incorporate dynamic
programming tactics in combination with batch q.
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Scaling Loki for extended use will require consolidating
overlapping attributes either through human interaction or
statistical methods, limiting repository growth over time.
Additionally, we look to incorporate user uncertainty into
resolution scores to prevent repository dilution as our knowl-
edge base grows.

7 CONCLUSION
In this paper we presented Loki, a system to automate map-
ping and pipeline reuse through learned human interactions.
Capable of improving accuracy of additional downstream
systems such as table-union, Loki is a welcomed addition to
any data scientists toolbox.
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