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ABSTRACT
As a key data-integration step, entity matching (EM) identifies
tuples referring to the same real-world entities in disparate data
sources. In many cases, the EM quality can be improved by repair-
ing incorrect values in the data; at the same time, it is well known
that the time costs of data cleaning by human experts could be
prohibitive. In this paper, we focus on the time-consuming human-
in-the-loop data-cleaning problem for relational EM, by recom-
mending to human experts a time-efficient order in which values of
attributes could be cleaned in the given data. Our proposed domain-
independent cleaning framework aims to save human users’ time,
by guiding them in cleaning the EM inputs in an attribute order that
is as conducive to maximizing EM accuracy as possible within a
given constraint on the time they spend on cleaning. In guiding the
cleaning process, our attribute-recommendation methods discover
and take advantage of information provided by the data, and also
use feedback from the EM engine. Our preliminary experimental
results suggest that the proposed approach leads to measurable
speedup, for a variety of time constraints, in the improvement of
EM accuracy over the baseline approach, in which domain experts
choose the sequence in which to clean the attributes of the inputs.

CCS CONCEPTS
• Information systems→ Data cleaning; Entity resolution; •
Human-centered computing→ Interactive systems and tools.
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1 INTRODUCTION
Entity Matching (EM) identifies tuples that refer to the same real-
world entities in disparate data sources. It is a key data-integration
step that can contribute significantly to improving data quality, and
thus to facilitating downstream data analysis and decision making
[6, 11, 13–15]. Incorrect values in the input data can severely harm
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the quality of EM outputs, thus potentially leading to unreliable
analysis results. Due to its importance, the problem of data clean-
ing has received significant attention in the research community.
Many of the proposed approaches involve humans in the loop, see,
e.g., [3, 7, 17, 18, 27, 29], and are based on iterative repairs of data
values until some data-quality standards are satisfied. In the EM
pipeline, existing data-cleaning approaches are typically used as a
data-preprocessing step intended to improve downstream EM qual-
ity [6, 12], with all of the time-consuming data-cleaning work being
completed prior to the EM step. While promising, this approach
suffers from some limitations, including the following:

(1) As we have discovered in our preliminary experiments, in-
correct data values do not necessarily hinder downstream
EM quality. As such, cleaning data with the objective of
meeting outside data-quality standards may not have the
intended effects on the quality of EM outputs.

(2) It has been observed [9] that EM practitioners tend to mini-
mize their data-cleaning efforts in the EM pipeline. To the
best of our knowledge, existing data-cleaning approaches do
not address explicitly the challenge of saving human efforts
in data cleaning in the EM pipeline.

Our Approach. In this paper, we address the human-in-the-
loop data-cleaning problem for EM. We introduce the problem
of improving EM quality by data cleaning, in presence of a con-
straint on human experts’ cleaning efforts and of feedback from
the EM engine. To address the problem for the case of relational
data, we propose a data-cleaning approach that, intuitively, strives
to achieve “maximal speedup” in the improvement of EM quality
with respect to the amount of cleaning time expended by human
experts. We model the problem as a search problem in a state space,
and propose a cleaning framework and two heuristics for directing
the search. Given ground-truth tuple-match/nonmatch information
and in presence of an EM engine viewed as a black box (that is,
no assumptions are made about how the matching is done by the
engine), our approach iteratively recommends to users to focus on
individual data attributes whose cleaning is likely to be the most
conducive to improving the accuracy of the output of the EM engine.
The users accept or reject each recommendation based on whether
the cleaning time for the attribute would be feasible within their
remaining time budget. Our approach is domain independent, in
that, instead of relying on users’ domain expertise, it automatically
discovers and takes advantage of information provided by the data,
as well as using feedback from the EM black box.

Clearly, if ground-truth tuple-match/nonmatch informationwere
available on much of the given data, then further EM might not be
needed, and there might be no room for EM-oriented data cleaning.
We make instead the realistic assumption that the ground-truth
EM information is available (e.g., developed manually by domain
experts) for relatively small samples of the data. Our approach can
be deployed on the samples, leading to discovery of sequences of
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attributes such that cleaning the samples following the sequences
is likely to maximize the “speedup” in improving EM accuracy. We
then expect the resulting attribute sequences to be as effective in
cleaning the original, typically much larger-scale, data, as long as
the samples are representative and the same EM engine is used. As
such, our approach fits well into, e.g., the paradigm of [10, 12, 20]
that separates the “EM development stage,” involving small data
samples, from the “EM production stage,” for the entire data.

2 MOTIVATING EXAMPLE
Fig. 1 showcases a toy example involving restaurant data. The
EM pipeline takes as input the two tables shown in Fig. 1a, with
incorrect data values circled. We use the term attribute pair to refer
to the attributes from the tables that describe the same aspect of
restaurants, such as name-rname and city-rcity.

As shown in Fig. 1b, before the incorrect values are repaired, the
downstream EM engine can identify correctly the tuple-pairs t1−t5
and t2 − t6 as a match and a non-match, respectively, see Fig. 1a
for the EM ground truth. The procedure cannot resolve t3 − t7 or
t4 − t8, because each pair has different names but the same city, and
t3 − t7 is a match while t4 − t8 is a non-match.

To correctly identify more tuple-pairs, a user aims to repair
incorrect values. Her time budget permits her to clean one attribute-
pair, either for city or for name. Without assistance, she might
choose city, as removing “, NY” seems easier than fixing t7. After
the cleaning, however, the EM engine identifies no more correct
tuple-pairs, as the user has made no change to values in t3 − t7 or
t4 − t8. Thus, her cleaning efforts are wasted.

Suppose the user is directed instead to repair the value for name,
rather than for city. Then the EM engine would correctly identify
all the matches and non-matches shown in Fig. 1a.

3 PROBLEM FORMULATION
Efficient EM-oriented data cleaning is inherently a multi-objective
problem, which can be refined into two legitimate concerns among
real-life users: (I) How to maximize EM accuracy by data cleaning
given a constraint of users’ cleaning efforts, and (II) How to mini-
mize user efforts in achieving desired EM accuracy. In this paper,
we focus on the first problem. We understand EM quality in terms
of matching accuracy: It indicates how many tuple-pairs across the
tables have been correctly classified as matches or non-matches,
and is commonly evaluated by F1-score as a balance of precision
and recall [6, 20]. We evaluate users’ cleaning efforts in terms of the
amount of wall-clock time that they contribute to data cleaning.

In this paper we solve the following problem:
Efficient EM-Oriented Data-Cleaning Problem. Given two

tables to be matched, achieve the maximum matching accuracy by
asking users to repair incorrect values into their presumed ground-
truth values in the tables until they run out of time. To solve this
problem, we require the following information as input:
• a set of similarity metrics associated with each attribute-pair;
• a black-box EM engine, e.g., rule based or learning based;
• ground-truth matching status (labels) of tuple-pairs for eval-
uating matching accuracy;
• the current matching accuracy;
• a wall-clock time constraint on users’ cleaning efforts.

(a) The input tables for the motivating example. The incorrect val-
ues are circled. For example, “Brooklyn, NY” is an incorrect value,
with the true value being “Brooklyn” (i.e., with “, NY” removed).

(b) The EM results on the input tables before data cleaning, after
repairing only t6, and after repairing only t7. For example, after the
value in t7 is repaired, the EM engine can label correctly all the four
tuple-pairs, see the ground-truth values in Fig. 1a.

Figure 1: The motivating example.

Figure 2: A state space for cleaning the data of Fig. 1a. S1 and
S2 represent the data versions achieved by repairing errors
in city and name, respectively, with associated time costs.
The space to the left of each dotted line denotes the subspace
determined by each time constraint.

The output includes the sequence of attributes to clean and the
EM accuracy reached via the cleaning within the time budget.

Solving this problem means maximizing the number of correctly
classified tuple-pairs for both matches and non-matches, with re-
spect to the given ground-truth matching labels.

4 SOLUTION OVERVIEW
We model the problem as a search problem, and introduce search
heuristics. In the cleaning process, our heuristics iteratively rec-
ommend to users to clean the attribute-pairs that can achieve the
maximum speedup of matching accuracy with respect to the re-
maining time budget, by leveraging the underlying knowledge in
the data and the feedback provided by the EM process.

4.1 Modeling the Problem
In our model, users identify data errors (incorrect values) and pro-
vide repair actions to correct them into user-presumed ground-truth
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Figure 3: Our proposed cleaning framework for the efficient
EM-oriented data-cleaning problem,where the cleaning pro-
cess is guided by our attribute-pair recommendations. We
interact with users to learn unknown cleaning time costs.

values, as in, e.g., [17, 22, 28]. We assume that users presume only
one ground-truth value for each data error, and that users repair
errors by column at a time. These assumptions are natural in real-
life cleaning processes, especially when cleaning is done using
automated functions, and are supported by recent data-cleaning
endeavors adopting the same setting [1, 2]. Our model is indepen-
dent of how users repair data errors, such as by cleaning manually,
coding automated functions, or interacting with third-party tools.

We model the cleaning process as a state-transition process in a
state space, where each state (node) represents a distinct version of
the data with all data errors in some (zero or more) attribute-pairs
repaired, and each transition (edge) denotes the set of user-defined
actions for repairing all data errors in an attribute-pair. Specific
matching accuracy and cleaning-time costs are associated with
states and transitions, respectively. E.g., in Fig. 2, state S1 associated
with matching accuracy 50% is reached by repairing the error “,NY ”
in Fig. 1, costing 20 time units. (It is easy to expand this model into
one where each transition denotes a single-value repair.)

For a fixed cleaning-time budget, all the reachable states and
their transitions make up a subspace, that is, the fraction of the full
space determined by the time constraint. The state(s) associated
with the maximum matching accuracy in the subspace are the goal
states. For example, in Fig. 2, given the time constraints t = 20 and
t = 40, states S1 and S2 are the respective goal states.

Search Problem. Given the state space, we hypothesize that the
efficient EM-oriented data-cleaning problem can be solved by find-
ing and following a path (solution path) in the subspace determined
by the given time constraint; the path starts from the input-data
state and terminates at a goal state. Each solution path is a sequence
of actions that clean individual attribute-pairs (solution-pairs). Our
hypothesis calls for searching and cleaning the solution pairs.

4.2 Our Approach
A major challenge to our hypothesis of Section 4.1 arises from
the incompleteness of the information available for the subspace
of interest, including unknown costs of transitions and unknown
matching accuracy of states. Even if we had all the information,
the full space would have 2n states for n attribute-pairs, and the
number of candidate paths would be exponential in the number of

Figure 4: Features (left) and feature relevance (right) for the
attribute-pairs of Fig. 1a. E.g., N1 is a feature for attribute-
pair name, and the second 0.33 value is the string similarity
between Szechuan Taste and Szechuan Heat . The feature rele-
vance for N1 and C1 is computed using Equation 1.

attribute-pairs, which makes brute-force search impractical. Thus,
we consider greedy search for sequences of solution pairs.

Our overall strategy is to iteratively identify as solution-pairs the
attribute-pairs that are the most effective in improving matching
accuracy, among those that can be completely cleaned within the
remaining time. Intuitively, these are the pairs that can achieve the
highest F1-score increases after the users repair their data errors.

Fig. 3 describes our proposed efficient EM-oriented data-cleaning
framework and details our strategy. Our framework modifies the
standard cleaning process, in which users iteratively select and
clean an attribute-pair until running out of time or of attribute-
pairs, by introducing an attribute-pair-recommendation step. This
step iteratively estimates the attribute-pair that is the most effective
in increasing the F1-score based on our proposed search heuristics
(Section 5), and recommends to the users to clean it. We then ask the
users whether our suggested attribute-pair can be cleaned within
the remaining time. If the users decline it due to insufficient time, we
recommend to them the next most effective pair for increasing the
F1-score. If cleaning our suggested attribute-pair introduces higher
matching accuracy, we identify it as a solution-pair, otherwise we
roll back the cleaning work to avoid risking more cleaning time for
recovering the loss of matching accuracy. The eventually cleaned
attribute-pairs are our best estimate of true solution-pairs, and the
final state of the data is our best estimate of the goal state.

We next introduce two recommendation (search) heuristics for
directing the cleaning process. Our heuristics are domain indepen-
dent; they discover and take advantage of the underlying informa-
tion in the data, and also use feedback provided by the downstream
EM process. Our framework is parameterized, in that any other
attribute-pair-recommendation method can be plugged in instead.

5 SEARCH VIA ATTRIBUTE-PAIR RANKING
In this section, we provide details of our heuristics for recommend-
ing attribute-pairs that are effective in improving entity-matching
accuracy. Our basic heuristic suggests attribute-pairs based on their
relationships with the ground-truth matching labels, while our en-
hanced heuristic also considers their inter-relationships and the
feedback provided by the EM process.

5.1 Power to Discriminate among Entities
In Fig. 1b, we observe that cleaning the attribute-pair for restaurant
name introduces higher matching accuracy than cleaning for city.
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Based on this observation, we hypothesize that attribute-pairs’ po-
tential for improving matching accuracy can be represented by
their power to discriminate between real-world entities. Thus, we
can achieve the maximum improvement in matching accuracy by
cleaning the data in the most discriminative attribute-pairs. More
discriminative attribute-pairs can provide EM engines with more
identifying information about real-world entities to help distinguish
them, and thus to reach higher matching accuracy.

In this paper, we propose ways to measure the level of discrimina-
tive power for attribute-pairs. Based on this measure, we introduce
our basic and enhanced heuristics. Our basic heuristic recommends
attribute-pairs following the ranking of their discriminative power.
In each iteration of the cleaning framework, the highest-ranked
(most discriminative) attribute-pair not yet recommended will be
returned as the most effective one in increasing the F1-score.

5.2 Detecting Discriminative Power and
Generating Ranking of Attribute-Pairs

5.2.1 Detecting Discriminative Power of Attribute-Pairs. We define
the discriminative power of attribute-pairs as follows.

Definition 1 (Notion of level of discriminative power, LoD). The
level of discriminative power (LoD) of an attribute-pair is the degree
to which we are confident that in the completely clean input data,
if we have the same value in the pair, we must have the same entity,
otherwise we must have different entities. The LoD range is [0, 1],
from completely unsure to completely confident.

As an example, in Fig. 1a, name has more LoD than city, because
it can provide more identifying information for restaurants.

Challenges in detecting LoD for attribute-pairs arise from the
lack of integrity constraints, e.g., functional dependencies, in the
problem input and from the presence of data errors. Therefore, we
have to estimate LoDs for attribute-pairs; we propose doing it using
the notion of feature relevance [5, 19, 25, 26, 31].

5.2.2 Feature and Feature Relevance for Entity Matching. A feature
is a numeric representation of an attribute-pair in terms of its string
similarities between values [6, 11, 14, 20]. We introduce feature
relevance, rel(F; L), as the Information Gain (I) of a feature (F ) to the
ground-truth matching labels (L):

rel(F ;L) = I (F ;L) = H (F ) − H (F |L), (1)

where H (F ) and H (F |L) denote the entropy of F and conditional
entropy of F given L, respectively [5, 25, 26]. For the computation,
we treat each similarity inside a feature as a discrete value, and
employ its frequency as its probability. Intuitively, feature relevance
suggests the amount of identifying information that values in the
attribute-pair can provide to distinguish real-world entities. We
estimate LoDs of attribute-pairs as their feature relevance rel(F ;L).
If a pair can be converted into multiple features using different
similarity metrics, we use its highest feature relevance.

For example, in Fig. 4, each attribute-pair of Fig. 1a is converted
into a feature using the Jaccard similarity metric [6, 11]. N1 is more
relevant to the ground-truth matching labels than C1, because its
information gain 0.5 is higher than that (0.31) of C1. Therefore,
attribute-pair name should have more LoD, as its feature N1 can

help better distinguish the truly matched and non-matched tuple-
pairs.

5.2.3 Ranking Attribute-Pairs. Recall that our heuristic recommends
attribute-pairs following their ranking of discriminative power
(LoD). Their ranking score is defined as follows.

Definition 2 (The basic ranking score). Let i be a candidate attribute-
pair to be ranked; its ranking score, denoted r (i), is defined as

r (i) =maxF ∈F(rel(F ;L)),
where F denotes the set of all features for the attribute-pair i
generated by its associated similarity metrics.

Our basic approach generates, in its first iteration, the overall
ranking of the attribute-pairs, by sorting them in the decreasing
order of their ranking scores; attribute-pairs i with larger feature
relevance would have higher ranking scores r (i), and would there-
fore be ranked higher. In the later iterations, the ranking is used to
recommend to the users the highest ranked attribute-pair that has
not been recommended yet. Intuitively, the users are always asked
to clean those remaining attribute-pairs that are the most powerful
in discriminating real-world entities. Thus, the approach can lead
users into the most effective search directions toward improving the
matching accuracy and reaching the goal state whenever possible.

5.3 Enhancing the Ranking of Attribute-Pairs
The basic approach of Section 5.2 considers just the LoD of attribute-
pairs, regardless of the inter-relationships between attribute-pairs
or any feedback from the matching process. At the same time, the
iterative nature of the framework offers an opportunity to lever-
age the feedback to guide the recommendations, by weeding out
non-promising attribute-pairs. We now describe how to enhance
the basic approach by taking into account the complementarity
between attribute-pairs and the solution-pairs identified so far.

5.3.1 Complementarity. The complementarity,LoCA;S , of attribute-
pair A to set of attribute-pairs S signifies the amount of new iden-
tifying information that A can provide to help S in distinguishing
real-world entities. We estimate LoCA;S using the highest feature
complementarity, cmp(F ,H ;L), of a feature F of A to all featuresH
of S, with respect to the ground-truth matching labels L, computed
as the Joint Mutual Information of F andH to L [5, 25, 26, 30]:

cmp(F ,H ;L) = I (F ;L) −
1
|H |

∑
H ∈H

I (H ; F ) +
1
|H |

∑
H ∈H

I (H ; F |L).

For example, in Fig. 4, the complementarity of city to name,
LoCcity;name, is 0, as city does not help name distinguish any more
restaurants. On the other hand, an attribute for a restaurant phone
number could add positive LoC to name, as, intuitively, it could offer
more identifying information in addition to restaurant name.

5.3.2 Ranking Attribute-Pairs. We treat the already identified solut-
ion-pairs as feedback from the EM process. When users repair
attribute-pairs that are largely complementary to these solution-
pairs, they collectively can potentially provide much more identi-
fying information to distinguish entities. We enhance our ranking
in such a way that the next ranked attribute-pairs should be as
complementary to the already identified solution-pairs as possible.
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Figure 5: Cleaning-time costs and rankings for the mu-
sic data. Our approaches ranked the more time-consuming
pairs higher. This could be counterintuitive to users, as they
generally prefer cleaning lower-cost attribute-pairs first.

Definition 3 (The enhanced ranking score). Let S be the set of
identified solution-pairs, i be a candidate attribute-pair to be ranked,
and L be the vector of ground-truth matching labels. We denote by
r ′(i) the enhanced ranking score of i , defined as

r ′(i) =maxF ∈F(cmp(F ,H ;L)).
Here, F andH denote the set of all features for the attribute-pair i
and the solution-pairs S, respectively.

Note that the attribute-pairs having larger feature complemen-
tarity to the features of the identified solution-pairs would have
higher ranking scores, and would therefore be ranked higher.

Our enhanced approach takes into account the already identi-
fied solution-pairs, and dynamically generates the enhanced rank-
ing by iteratively adding attribute-pairs one at a time. Algorithm 1
provides the pseudocode for the approach. Here, attribute-pairs are
selected based on their basic ranking score r (i), until we identify a
solution-pair. The rankings are then iteratively appended with the
attribute-pairs that have the largest enhanced ranking score r ′(i).
For example, when selecting the second pair to be ranked, if the
first pair is identified as a solution-pair, r ′(i) is computed for the
other non-ranked pairs, otherwise r (i) is computed.

We use the enhanced ranking to recommend attribute-pairs
to users. Intuitively, we ask users to clean the combinations of
attribute-pairs that are the most powerful in discriminating real-
world entities, and thus lead users to the most promising search
directions toward reaching the goal state whenever possible.

6 PRELIMINARY EXPERIMENTS
In our preliminary experiments, we have validated our approach of
finding solution-pairs by algorithmic recommendations, against the
baseline approach of cleaning based on users’ domain knowledge.
Our enhanced approach consistently outperformed the baseline,
by achieving higher speedup of improvement of EM accuracy with
respect to the time constraints, and in some cases even delivering
EM accuracy not achieved by the baseline, see Section 6.3.

6.1 Experimental Settings
Experimental Setup. Our experiments were conducted over the
music and baby-product data domains, using samples of the data
sets published by the Magellan group [8]. The samples have 80 and

Algorithm 1: Append an attribute-pair to enhanced ranking
Data: Two tables with ground-truth matching labels L for

tuple-pairs, the set ofm not-yet-recommended
attribute-pairs (Ai ) each associated with a set of
similarity metrics (Mi ),A = {(Ai ,Mi )|1 ≤ i ≤ m}, and
a sequence of n identified solution-pairs (Sj ) with their
similarity metrics (Nj ),S = {(Sj ,Nj )|1 ≤ j ≤ n}.

Result: A recommended attribute-pair for the users to clean.
begin
F = �;H = �;
for (Ai ,Mi ) ∈ A do
Fi ← applyMi to Ai and get a set of features for Ai ;
F ← F ∪ Fi ;

if S is empty then
Find the F ∈ F with the highest rel(F ;L);

else
for (Sj ,Nj ) ∈ S do
Hj ← apply Nj to Sj to get set of features for Sj ;
H ← H ∪Hj ;

Find the F ∈ F with the highest cmp(F ,H ;L);
r ← the attribute-pair of F ;
Recommend r to users.

79 tuples in the two music tables, and 67 and 76 tuples in the two
baby-product tables. In line with existing data-cleaning endeavors,
see, e.g., [16], we assume that the input tables are above 50% clean,
as is typically assumed in real-life data-cleaning projects. Each
domain provides ground-truth matching labels for 40 matched and
40 non-matched tuple-pairs. We employed Magellan as the black-
box EM engine [10, 20], and implemented our approach on top of
Magellan and the scikit-feature repositories [24].

The BaselineApproach.We compared our basic and enhanced
approaches (Sections 5.2 and 5.3) with the baseline approach, which
requires domain experts to direct the cleaning process, cf. e.g., [21].
In the baseline approach, users iteratively select attribute-pairs
to clean based on their domain knowledge, with the objective of
introducing higher EM accuracy. The sequence of user-selected
attribute-pairs can be viewed as a ranking. We compared the EM
accuracy achieved by using our rankings with that for the baseline
rankings, with respect to different cleaning-time budgets.

Experimental Design.We worked with ten users with various
backgrounds, dividing them equally into two groups. Each group
was provided necessary information, e.g., the purposes of EM and
data cleaning, and how to retrieve attribute-pair recommendations.
Then each group performed EM-oriented data cleaning over the two
data domains, first using their own rankings for one domain, and
then using our recommended rankings (either basic or enhanced)
for the other domain; the two groups explored the two domains
in different order. We controlled the cleaning work by having the
users repair values to the same ground-truth values.

The users came in as non-experts. We provided to them sufficient
domain knowledge by giving them the ground-truth values for the
samples, and by having them examine and compare the raw-data
version with the ground-truth version before doing the baseline
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experiments. The outcomes served as the users’ domain knowledge
in directing the search and developing their attribute-pair rankings.

6.2 Experimental Results
Fig. 5 lists the rankings collected from the users and from our
approaches. (Due to the space limit, we only list the rankings for the
music domain.) Fig. 6 illustrates the improvements in EM accuracy
achieved via cleaning with these rankings; the x-axis denotes the
different time constraints, and the y-axis represents the final F1-
scores after running out of the time budgets.

Our basic approach generally performed better than the baseline
for both domains, occasionally achieving lower EM accuracy. On
the other hand, our enhanced approach outperformed the baseline
in such a way that, in almost all cases, we saw the more assured
advantages as the more attribute-pairs were repaired, until the
point at which the users had cleaned all the attribute-pairs. These
advantages were presented even for short time budgets.

6.3 Summary
Our experimental results suggest two potential advantages of our
proposed approaches over the baseline. First, our enhanced ap-
proach appears to introduce higher speedup in the improvement
of EM accuracy with respect to time constraints. Given a cleaning-
time budget, it can help users to take full advantage of their efforts
and reach the highest cleaning efficiency as early as possible. It also
accommodates well different ways of repairing incorrect values.
Second, when users are given sufficient time, our approaches can
even result in the EM accuracy that may not be achievable by the
baseline approach. E.g., in Fig. 6a, starting from t = 60, the baseline
approach by user 5 achieved around 96% EM accuracy, while our
approach achieved around 97%. This is because our approach re-
turned a sequence of solution-pairs consisting of Song, Genre, and
Album, while the baseline sequence used all the pairs.

In the preliminary experimental results, our enhanced approach
consistently outperformed the baseline approach, in which the
users’ domain knowledge was leveraged as heuristics to direct the
cleaning. We posit that our enhanced approach looks promising, as
it can help users reach the maximum EM accuracy with respect to
the given time constraints, thus addressing our stated problem.

7 RELATEDWORK
Entity Matching. Over the past few decades, a significant number
of EM techniques have been developed, see, e.g., [6, 11, 14, 20, 23].
Due to the potentially severe impact of dirty data on EM quality,
real-world EM practitioners look for effective and efficient data-
cleaning solutions for improving EM accuracy [9, 10, 12]. For exam-
ple, Johnson Control Inc. calls for the EM system Magellan to be
extended with data-cleaning capabilities [20]. At this time, we are
not aware of EM-focused research that would address this need.

Data Cleaning. In this paper, we introduced the problem of
improving user efficiency in EM-oriented data cleaning. To the best
of our knowledge, this research thrust has not been pursued in the
literature. A direction of related work has focused on interactive
data cleaning that would minimize user efforts [3, 4, 17, 22, 27–29].
These and related solutions typically interact with users by asking
for, or confirming, valid data updates or repair rules. In the process,

(a) Music (b) Baby Product

Figure 6: F1-score improvements against time constraints t .
To avoid bias, we used averaged F1-score over six EMmatch-
ers provided by Magellan, with the score at t = 0 achieved
before any cleaning. Starting from t = 60 in (a) or t = 50 in
(b), the users had cleaned all the attribute-pairs. Generally,
our rankings improved the F1-scores more than the user-
proposed rankings. This suggests that doing the more time-
consuming cleaning steps first (see Fig. 5) could pay off.

the user effort is minimized in two ways: Directing users to the
most beneficial data items and soliciting user-defined/preferred up-
dates on them [3, 27, 29], and generalizing the cleaning behaviors of
users to relevant data items [17, 27, 29]. Our work differs from these
approaches in that our focus is on improving the quality of a down-
stream application (EM engine), rather than on enforcing certain
data-quality standards. Our motivation stems from the fact that, as
discussed earlier, higher data quality may not necessarily introduce
higher downstream-application quality. QOCO, SampleClean, and
ActiveClean [4, 22, 28] address problems that are similar to ours,
by leveraging application-specific knowledge to guide the cleaning
process. Unlike these projects, in our work we do EM-oriented data
cleaning, and we do not limit the scope of possible types of data
errors or restrict the choices for the downstream applications.

8 CONCLUSION
In this paper we studied the problem of maximizing EM quality by
data cleaning under a time constraint on the cleaning efforts by
users. We modeled the problem as state-space search, and intro-
duced a framework and two recommendation heuristics to address
it. The domain-independent framework and heuristics iteratively
identify and direct users to clean the attribute-pairs that are the
most effective in improving the EM accuracy within the time con-
straint. This is accomplished by discovering and taking advantage
of the underlying knowledge in the data and of the feedback pro-
vided by the downstream EM process, rather than relying on the
users’ domain expertise. The preliminary experimental results sug-
gest that our extended approach achieves measurable speedup in
improving EM accuracy with respect to different time constraints.
The approach can even deliver EM accuracy that is not achievable
by directing the cleaning process by domain experts.
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