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ABSTRACT
In recent years the field of research on natural language in-
terfaces for databases (NLIDBs) has progressed considerably,
which can be seen by the results of challenges like Spider.
However, most of these approaches concentrate on deliv-
ering best-guess answers and improving (computational)
accuracy. Yet, there are still a lot of open issues regarding
robustness, confidence, and transparency. Therefore, this vi-
sion paper starts to point to relevant milestones as well as
corresponding opportunities for addressing them, opening
up a potential path of the future development of NLIDBs.
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1 INTRODUCTION
Motivation: Natural language (NL) interfaces present a

convenient way for non-technical users to retrieve informa-
tion from databases. In recent years, black-box approaches
based on deep learning have shown to dominate existing
unidirectional rule-based or statistical approaches in pro-
viding natural language interfaces for databases (NLIDBs)
[31]. However, there are still open issues in the sense that
black-box approaches are not able to deliver explainable
translations between natural language statements and SQL
statements in a transparent way [7].
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For example, adversarial attacks of black-box approaches
have shown that a slight modification of the input features
of a deep model may lead to prediction errors with high
confidence. For NLIDBs with black-box based translation ap-
proaches this might mean that they will translate the NL user
query to a completely unrelated SQL query. This is a huge
problem for users without technical knowledge since even
when presented with the SQL translation they might not no-
tice the problematic translation. This renders the black-box
approaches unusable for critical domains such as medicine
or finance where erroneous information can have a severe
negative impact.

Contribution: In this vision paper, we outline what a more
robust approach for NLIDBs could look like as a potential
solution. At the core, we suggest the usage of rule-based
translations. While rule-based approaches were common
in the 1980s, our idea is different: First, we suggest using
bi-directional rules that can provide a mapping from NL to
SQL and back operating on abstract syntax graphs. With
such a set of rules, any translation from NL to SQL could be
translated back to NL to explain to the user what the system
executed. Therefore, this approach differs from alternative
solutions presented in [13] and [9]. Second, instead of man-
ually crafting the rules, we suggest to automatically derive
the rules using machine learning algorithms. The goal of this
approach is to avoid the pitfalls of the systems developed in
the 1980s by learning a large corpus of rules that can deal
better with variety in the user input.
In the first part, we discuss the need for such a system

by dissecting an existing natural language interface called
DBPal [28] and reflect pitfalls shared among current systems.
We present the results of a study showing the weaknesses of
black-box approaches such as DBPal through some concrete
examples that lead to erroneous translations. In addition
to that, we identify the needs to cope with these pitfalls,
sketch what kind of human-centered language features a
potential solution should support, and suggest what kind of
tool environment is required.

Outline: The remainder of this paper is organized as fol-
lows: In Section 2, today’s pitfalls are reflected by looking
into concrete issues of DBPal and identifying general issues
such as missing extensibility and lack of language data. In
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addition to that, critical needs are outlined by discussing
robustness and transparency. In Section 3, a potential idea
for a solution is discussed. Finally, we draw a conclusion
in which we combine the pitfalls, needs, and the possible
solution in Section 4.

2 TODAY’S PITFALLS AND NEEDS
In this section, today’s pitfalls with regard to robustness and
transparency of natural language interfaces for databases
are reflected using DBPal[25; 28] as an example. DBPal re-
quires a database schema in order to automatically generate
a large collection of samples containing NL queries and their
corresponding SQL statements based on a collection of seed
templates. The pairs can then be used to train a black-box
translation model.

2.1 Concrete Issues for the End-User
In the following subsection, some exemplary NL queries
are introduced that lead to failures in DBPal. Although they
are meaningful and could be asked by real-world users, the
deep learning-based system1 is not able to translate them
correctly.

Working Questions. Let us start with a simple question that
works. DBPal was trained for answering typical OLAP-style
queries (i.e., aggregations). So, a query like (Q1) works fine.
Q1: "How many patients are in the system?"

DBPal answers that there are 100 patients in the system. It
also provides the corresponding SQL query for this question.

1 SELECT count( 1 ) FROM patients

Simple Questions that fail. However, already using slight
modifications of this simple question, which asks about fe-
male patients in a specific way (Q2), fail.
Q2: "How many female patients are in the system?"

For this query, DBPal returns the value 27 which seems
reasonable but the executed query is unexpected:

1 SELECT count( 1 ) FROM patients WHERE patients.

gender <= "female"

The main problem with this type of question is that the
results seem to make sense for an end-user and thus they
might not be able to identify that an erroneous translation
happened.

ComplexQuestions that fail. While this already demonstrates
that DBPal makes errors that are not easily identifiable by
users, there are also other categories of problems:

For example, question (Q3) cannot be translated properly
by DBPal (since such types of queries were not contained in
1https://dbpal.dm.informatik.tu-darmstadt.de/

the training set) but might make sense from a user perspec-
tive.
Q3: "Are there errors in the database?"

In this case, DBPal reports success and returns the value
100. It would, therefore, be plausible for the user to assume
that this is a valid question, which was handled properly
by the system. Yet unfortunately, the system resorted to
counting the entries in the patients table and was not able to
answer the intended question.

Insight and Final Thoughts. These examples shed some light
onto the problem of why current black-box NLIDBs are not
yet useful for end-users unfamiliar with SQL. In the follow-
ing, we discuss two other problematic dimensions of black-
box NLIDBs. In addition to the above, exploring potential
boundaries of SQL queries, so that they can easily be mapped
into NL statements, remains an open issue. The same holds
for user interactions with query plans in this context [16].

2.2 Tomorrow’s needs
Need for Explainability. One of the main problems of black-
box NLIDBs is the missing explainability: it should be pos-
sible to show how a given statement in a domain language
of the user space (e.g., a medical question) is mapped to a
corresponding SQL statement for a given database schema
in a detailed, step-by-step way, and vice versa.
This is an open issue for systems based on deep neu-

ral networks where transformations are realized atomically.
Sequences of intermediate results of single transformation
steps as they show upwhenworking with bidirectional trans-
formation rules like triple graph grammars (TGGs) are not
available.

Need for Extensibility. Another dimension that makes it hard
to use black-box approaches is missing extensibility, i.e. a
possibility to easily adjust the translation system to changes
in the database schema or the domain language. This is an
open issue since state-of-the art systems are using trained
neural networks where the database schema and the domain
language are baked into the model. Changes require the
network to be retrained with modified training data.

Amajor issue in this context is the scarcity of suitable data,
in this case, pairs of NL and SQL statements. Unfortunately,
this data is a) hard to obtain and b) even if there is data
available, it is hard to evaluate if the amount and variety
where enough for the trained system to generalize.

Need for Robustness. As discussed earlier, many more chal-
lenges arise when using NLIDBs in settings of safety-critical
applications such as hospitals. In these environments, de-
ployed solutions that come with natural language interfaces
need to be robust and transparent in order to become eligible
for insurance coverage:
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Figure 1: A TGG represents a set of rules that translate NL step-wise into a SQL statement and vice versa.

Concerning robustness, it should be possible to handle
complex questions that require join and nest operations, re-
quests entered as a set of keywords, grammatical alterations,
variations in vocabulary and syntax, different linguistic styles
of phrasing, ill-formed or syntactically incomplete questions,
and questions that are characterized by missing information
[28]. A potential opportunity concerns conversational agents
between the NLIDB and the user to get feedback from the
user or to offer options such as auto-completion. Further-
more, another opportunity is to support the constructive
development of queries in a step-by-step way through inter-
actions between the end-user and the system in a session-
based dialogue [32]2.

Need for Transparency. Concerning transparency, it should
be possible for end-users to trace down failure cases and cor-
rect mappings. This requires a) a way for the user to decide
whether his information request was translated correctly by
the NLIDB (e.g., through deterministic back-translation and
query explanation) and b) a way to correct or specify their
request (e.g., through iterative refinement [28] or a guided
clarification process by a conversational agent[32]).

3 A POTENTIAL SOLUTION
The main idea of this approach is summarized in Figure 1.
Initially, an NL question is translated into a graph repre-
sentation using existing approaches for semantic parsing.
Afterwards, we use triple graph grammars (TGGs) [23; 29]
that translate the semantic parse tree into a SQL tree as a set
of graph transformations [10].3
As mentioned at the beginning, we propose a solution

where the set of translation rules (i.e., the TGG) is learned
from a training set. To synthesize training data for learn-
ing the rules we need NL/SQL pairs. We propose to use a
data generation approach such as the one used by DBPal.
More details about the learning process are discussed in Sec-
tion 4. In the following, we discuss some basic properties of
2https://yale-lily.github.io/cosql
3The general idea of TGGs is to specify a language of integrated models that
consist of a source and a target model as well as a correspondance structure
in order to support bi-directional model transformations using graphs.

rules expressed as a TGG which make them an interesting
alternative to encode rules for translating NL to SQL.

Support for bidirectional Alignment. The grammar of a lan-
guage like SQL can be used to generate valid statements
whose abstract syntax trees are encoded as graphs, whereas
its grammar can be represented as a graph grammar. In con-
trast to that, any kind of domain jargon (DJ) comes with
a set of given statements whose abstract syntax trees are
represented as graphs, but that may lack a fully specified cor-
responding grammar. TGGs are especially interesting since
they support a bidirectional mapping of graphs for those
languages and thus can not only be used for the translation
but also for back-translation to explain SQL to the user as
an NL question [4; 5].

Specific contribution: Because TGGs are bidirectional, the
same rule set is able to support the mapping from a statement
expressed in DJ to a SQL query and vice versa. Therefore,
there is no need to create a separate implementation for each
direction.

Support for Evolution: As discussed before, the set of ques-
tions in NL/DJ a system needs be able to translate should be
extensible. That is why a potential solution cannot assume a
fixed input language specification of a DJ. Another benefit of
TGGs is that the translation rules can be extended incremen-
tally without violating correctness of the translation if the
natural language needs to be extended. First results of how
to evolve the NL artifacts whose abstract syntax is stored
using RDF with graph transformation rules are discussed in
[3].

Specific contribution: Rules of a TGG are fully associative.
There-fore, rules sets formulated as a TGG can be extended
with new rules easily because there is no specific order in
which rules need to be applied.

Support for Incompleteness: Since any DJ as a subset of a natu-
ral language can also be incomplete and has subtle variations
depending on the (group of) users, a potential solution can-
not assume a fully specified version of the user’s language. It
needs to support the use of placeholders, like abstract nodes

https://yale-lily.github.io/cosql
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in a graph, representing an abstract syntax tree that might
be replaced later on by concrete nodes when applying graph
transformation rules, once the learning of the specific DJ has
happened.

Specific contribution: Since TGGs might encompass ab-
stract nodes, incomplete parts of a language can be modeled
as part of a TGG. Different from black-box models, TGGs
shall be able to define the variability of the input language
explicitly.

Support for Ambiguity: In contrast to machine-cen-tered lan-
guages, natural languages are inherently ambiguous, which
turns out to be a strong feature of these languages, not a
defect. Since this also holds for any DJ as a subset of a nat-
ural language, a potential solution that maps statements
expressed in a DJ into, e.g., SQL statements, needs to get
access to some kind of context. This can be used to resolve
ambiguity issues by integrating the graph representing the
abstract syntax tree of statements encoding end-user queries
with the graph representing the abstract syntax tree of state-
ments encoding knowledge using triple graph rules. First
results of how to handle language ambiguities already have
been discussed in [15] using re-construction techniques.

Specific contribution: TGGs also support the alignment of
statements in a DJ encoding the query and the available
context to resolve ambiguities.

Support for Composability: Because a natural language in-
terface is a result of a software-engineering process (see
also [27]), the same holds for its components. As such, the
specification of a DJ used by an NL interface is also an engi-
neering result, and because within any constructive engineer-
ing process there is a tendency to compose new solutions
out of already available components, a potential solution
needs to support the engineering of languages as discussed
in [1; 11; 21] by composing already available building blocks,
whereas theoretical support for composability comes from
category theory as discussed in [24].

Specific contribution: TGGs rule sets shall be composable,
like languages are composable.

Support for Agility: Because, as discussed above, a language
artifact expressed in a specific DJ can be incomplete or am-
biguous, a potential solution needs to support dialogues in
order to come back to the user and ask for advice of how to
understand a certain statement. In addition to that, humans
like to use agile protocols that are not preventing, for exam-
ple, spontaneous meta-questions as it is the case with strict
technical protocols as discussed in [17] and in [6]. There-
fore, a potential solution needs to support agile dialogues.
That could be specified applying a compositional approach
of constructing language models that not only talk about

the syntax and semantics of the language, but also about its
pragmatics. This is meant to be the operational semantics
of speech-acts as part of agile protocols expressed in that
language as discussed in [6] with support for composability
from category theory [24].

Specific contribution: TGGs rule sets shall be compatible
with embedded languages created through composition.

4 MISSING PIECES
As discussed before, we believe that TGGs are an interesting
direction to develop NLIDBs. However, developing TGGs
for NLIDBs is not trivial. In the following, we discuss the
missing pieces needed to bootstrap a TGG-based NLIDB:

Learning Rules: Since handcrafted TGG rule sets are cum-
bersome when they reach a certain size, machine learning
approaches could be applied to derive those rules [26]. The
learning of grammar rules has been discussed in [2; 8; 12].
It might help to combine classical rule-driven approaches
from the 1970s-1990s with machine learning approaches
from 2014-today as discussed in [19; 26]. As long as such
rule sets are composable, they can easily be extended by addi-
tional rules. Once an alignment by rules between statements
expressed in, e.g., SQL and a certain DJ (and vice versa) is
established, a transparent mapping becomes available natu-
rally.

Iterative Development: In case that language evolution and
composition is required, design science [30] and construc-
tivism [18] might be very helpful methods [20]. Design sci-
ence could be able to support the iterative development of
rule-based mutual alignments, whereas constructivism sup-
ports the composition of languages out of predefined ele-
ments.

Dialog-based NLIDBs: Robustness could be achieved using
dialog-based approaches for context clarification. As a con-
sequence, not only the syntax and semantics of a language
need to be engineered to be able to express statements, but
also its pragmatics to support dialogues. In addition to that,
context may help to resolve ambiguities or fix incomplete
statements, which require certain domain knowledge to be
engineered in the context of an already engineered language
[14; 19; 22].
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