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ABSTRACT
Traditional ways of interfacing with databases such as SQL al-
though declarative are not intuitive enough for non-expert users.
Because of this would be helpful if users of a database management
system could pose their queries in natural language. As datasets
grow larger and larger traditional ways of storing and querying
data become obsolete and developers gravitate towards distributed
processing frameworks such as Apache Spark. In this paper we
present NLonSpark, a framework for Natural Language to SQL
translation and execution built on top of Apache Spark. We have
also introduced a series of optimization that significantly reduce
execution time compared to the naive implementation.
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1 INTRODUCTION
As more and more data becomes available, a growing number of
end users need to query them. A large portion of those users do
not have any knowledge of the database schema or the database
query language (usually SQL). Thus, they would rather express their
queries in natural language (NL) and have a tool that understands
the underlying database schema and converts their query to a valid
SQL query. The vision of NL interfaces to databases is to make data
more accessible for a wide range of non-tech savvy end users with
the ultimate goal to ‘talk’ to a database (almost) like to a human.

Furthermore, with the growing volume of data, it becomes in-
creasingly difficult to store and analyze them on a single machine.
Rather than running pre-defined queries to create static dashboards,
business analysts and data scientists want to explore their data by
asking a question, viewing the result, and then either altering the
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initial question or drilling into results. This interactive query pro-
cess over large amounts of data requires distributed processing
frameworks such as Apache Spark [20] that can respond and adapt
quickly. However, existing NL interfaces assume a relational data-
base management system, and take advantage of its capabilities,
including schema information and indexes. To the best of our knowl-
edge, natural language query interfaces over Spark are still missing,
and the implications and challenges of porting existing technology
from the database to work over Spark have not been examined.

In this paper, we present NLonSpark, a framework that aims to
fuse Natural Language-to-SQL translation and execution with the
Spark distributed processing framework. The main aim of NLon-
Spark is to provide a Natural Language Interface on datasets that
need to be queried using Apache Spark. To achieve this goal, we
modified NaLIR [9], a state-of-the-art NL interface, to use Apache
Spark instead of a traditional DBMS. In the process, we ported
the most time-consuming part of NaLIR, which used the DBMS,
to Apache Spark. We investigate the challenges and tradeoffs of
the problem, and we present a series of optimizations that aim to
mitigate shortcomings of Apache Spark compared to a traditional
DBMS. To the best of our knowledge, this is the first attempt for
Natural Language-to-SQL translation and execution on top of a
distributed processing framework.

2 RELATEDWORK
Several approaches to NL interfaces have been proposed by the
database community, including early keyword-based systems [6,
8, 12, 13], and latest NL-based approaches, such as NALIR [9]. In
their core, most approaches assume some kind of graph, either a
schema graph that represents the database relations as nodes and
the joins between them as edges [8, 12, 13] or a tuple graph where
the tuples become the nodes [6]. Then, answers to a query are
defined as sub-graphs over the complete graph, comprising a subset
of the relations and tuples that contain the query keywords and
are connected by the joins between them. NALIR [9] is the first to
introduce a syntactic parse tree for query representation. We will
describe its architecture in more detail in Section 3.2.

In SQLizer [16], the user query is translated into a query sketch
(skeleton) using semantic parsing techniques. Type-directed pro-
gram synthesis is used to complete the sketch into a well-typed
SQL query. Finally, repair techniques are used to repair the initial
sketch and capture the structure of the desired, final, query.

Deep learning (DL) techniques have been recently proposed for
translating NL queries to SQL queries (e.g., [5, 11, 15, 17, 21]). For in-
stance, Seq2SQL [21] is a deep neural network that is trained using a
mixed objective combining cross-entropy losses and reinforcement
learning rewards for in-the-loop query execution on a database.
SQLNet [15] uses a sketch-based approach to generate a SQL query
from a sketch. The sketch aligns to the syntactical structure of a
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SQL query. A neural network is then used to predict the content for
each slot in the sketch. DialSQL [5] is a dialogue-based structured
query generation framework that uses human guidance to boost
the performance of existing algorithms by identifying potential
errors in the generated SQL query and asking users multi-choice
questions to fix it. The authors test their framework using SQLNet
as a black box and report performance increase from 61 to 69 % .

For this work, we chose NaLIR for the following reasons:
• It uses a natural language understanding module that does not
employ neural networks that are time-consuming to train and
more cumbersome to deploy.
• The natural language understanding module understands the
structure of the sentence and this might lead to better under-
standing of complex sentences.
• It can infer more effectively joins when needed compared to

DL-based methods (the majority of them handle a single table).
• Existing DL-based approaches do not consider the actual data,
hence the resulting SQL, even if it is syntactically correct, it
may not be semantically correct, and hence executable over
the underlying data [7]. NaLIR will produce queries that can
produce results over the underlying data.

3 PRELIMINARIES
3.1 Apache Spark
Apache Spark [20] is a unified engine for distributed data process-
ing. Spark uses the MapReduce [3] programming model but extends
it with an abstraction called Resilient Distributed Datasets (RDDs)
[18]. Using RDDs, Spark can express a vast number of workloads
that previously needed separate processing engines. Example work-
loads can involve SQL [1, 4], streaming workloads [19], machine
learning [10] and graph processing [14].

Apart from RDDs, another Spark abstraction that is relevant to
our use-case is Spark DataFrames which are RDDs of records with
a known schema. Spark DataFrames get most of their functionality
from the DataFrame abstraction for tabular data in R and Python
and essentially model a database table. Dataframes provide methods
for filtering, computing new columns, and aggregation. In Spark
Dataframes, these operations map down to operations of the Spark
SQL engine and use all available optimizations, such as predicate
push-down, operator reordering, and join algorithm selection.

3.2 Overview of NaLIR
Figure 1 describes NaLIR’s architecture.

As we can see in the figure, the Dependency Parser takes as
input the NL query and uses the Stanford Parser [2] to generate a
dependency parse tree, where nodes represent the terms and edges
represent the linguistic relationships between them.

The Parse Tree Node Mapper maps elements of the parse tree to
database elements, i.e., relation names, attributes, and values. To
do so, it uses the database schema graph and use indexing facilities
both provided by the underlying RDBMS. The identification of the
select, operator, function, quantifier and logic elements in the query
is independent from the database being queried; a dictionary pre-
filled with a set of phrases – for example, the function node COUNT
corresponds to the phrase “number of" – is utilized.

Figure 1: The architecture of NaLIR

Then, both the Parse Tree and the Node Mappings are fed into
the Parse Tree Structure Adjustor that generates intermediate repre-
sentations of the query, the Query Trees. The Parse Tree Structure
Adjustor corrects any possible flaws in the structure of the parse
tree to make it grammatically valid. To rank candidate query trees,
three factors are taken into account: (i) the number of parse tree
nodes that violate the grammar, (ii) the mappings between the parse
tree nodes and the database elements that can help to infer the de-
sired structure of a parse tree, and (iii) the similarity of a resulting
tree to the original linguistic parse tree.

Finally, the Query Tree Translator takes as input the Query Tree
and produces the final SQL query that is fed to the RDBMS for
execution. During the translation, there are two possible cases. On
one hand, when the query tree does not contain function nodes or
quantifier nodes the translation is quite straightforward. On the
other hand, when the query tree contains function nodes or quanti-
fier nodes, the target SQL statements will contain subqueries. NaLIR
uses the concept of a block, which represents a nested subquery, to
clarify the inner scopes, and translates the tree one block at a time,
starting from the innermost level.

4 NLONSPARK
NLonSpark is implemented on top of Spark and Spark SQL. Spark
SQL is a module in Spark which integrates relational processing
with SparkâĂŹs functional programming API. It supports querying
data either via SQL or via the Hive Query Language.

NLonSpark is based on NaLIR. Porting NaLIR on Spark, we faced
the following challenges:
• NaLIR is tied to the underlying DBMS to provide schema infor-
mation and fetch the underlying data. In our case, we had the
additional problem that Spark SQL does not incorporate any
schema information. Thus, we need to manually inject schema
information about the dataset.
• The Node Mapper is the most time-consuming component be-
cause it tries to map query terms to database elements. After
porting NaLIR over SPARK, the performance was not on par
with the original NaLIR because NaLIR used full-text indices
provided by the RDBMS for the query term mapping and text
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Figure 2: The architecture of NLonSpark

similarity routines. Spark, on the other hand, does not provide
textual indexes that we could use.

In a nutshell, NaLIR’s reliance on foreign keys and need for low la-
tency string lookups make it a challenging fit for a batch-processing
system like Spark. In what follows, we examine how we address
these challenges making a first step towards supporting Natural
Language-to-SQL translation and execution over Spark.

To port NaLIR on top of Spark and tackle the first challenge, we
changed the Node Mapper functionality. Instead of communicat-
ing with an RDBMS, it now communicated with an SQL concept
abstraction layer that provides the functionality of an RDBMS.

The SQL concept abstraction layer achieves two primary goals.
First, it provides the necessary schema information that the RDBMS
provided for the original NaLIR. Second, it provides indexing ca-
pabilities that Spark lacked, by implementing inverted indexes
functionality on top of Apache Spark using lucene4s and Spark
operations instead of relying on an RDBMS.

The Spark-enabled Node Mapper performs these operations:
• Full Text search: Since Spark lacked inverted indexes, we imple-

mented this functionality on the SQL concept abstraction layer.
We also added bloom filters to avoid inverted index searches
where possible.
• Columns summations: This functionality provides similarity
amongst numerical columns and was implemented using the
Dataframe API of Spark.
• Column name similarity: This was provided by the SQL con-
cept abstraction layer without calling Spark since it is not a
processing-heavy operation.
The available indexes of the SQL abstraction layer take two forms:

(a) bloom filters, and (b) inverted indices. We used bloom filters to
all textual columns in the dataset to reduce full-table scans of the
dataset. We created inverted indices for large textual fields to speed
up full-table scans when they do occur. One example where we
utilized a full text index is for the text of reviews (in the Yelp dataset
that we used in our experiments). The two types of indexes were
needed to reach performance that was on par with the centralized
implementation.

Bloom filters use a hashing function to determine if an element
is part of a set. Bloom filters are a probabilistic data structure that

Table 1: How parallelism was achieved in the cluster

Number of instances Number of cores per instance Parallelism
9 14 126
4 14 56
2 14 28
1 14 14
1 7 7
1 1 1

returns that an element is "possibly in set" or "definitely not in set".
This means that when the bloom filter returns that the element is
not in the set, we avoid a full-table scan. However, if the bloom
filter returns that the element is possibly in the set, we have to
perform a full-table scan to determine if the element actually exist
in the set. For the bloom filter implementation, we used Spark’s
built in bloom filters.

Complex text fields that contain a lot of common words will
cause the bloom filters to return "possibly in the set" often and thus
triggering a full table scan. We implemented inverted indices for
those complex textual fields. More specifically, for each partition of
the target field in the dataset, we created an inverted index using
lucene4s and Spark’s mapPartitions primitive. So when the time
comes for a full table scan, NLonSpark queries each partition of the
target field and returns the results from the saved inverted index.

Figure 2 shows the architecture of NLonSpark. The major differ-
ences are:

(1) the NodeMapper functionality now runs on top of Spark.
(2) Spark now provides via an abstraction layer information

about the database schema.
(3) Spark now provides the textual indices.

5 EVALUATION
For our evaluation, we used the YELP dataset. The dataset was
converted to ORC from JSON prior to running the experiments.
The conversion process was mostly easy since Spark inferred the
datatype for each field automatically. What we had to do manually
is to feed the foreign key constraints for the dataset to the SQL
concept abstraction layer. The SQL abstraction layer uses Spark’s
type information for the Dataframe. Hence, we expect that for JSON
datasets with relatively few foreign key constraints the process of
moving the dataset to Spark will be straightforward. Furthermore,
this process is not very different fromwhen creating a new database
in a relational database system, where one has to define the foreign
key constraints. Hence, one can think that when creating a new
dataset on Spark, this information also needs to be provided, albeit
in a different way, since on Spark, this process is not provided as an
inherent mechanism. Thus, we do not consider this as a stumbling
block for supporting Natural Language-to-SQL translation and
execution over the Spark distributed processing framework.

We used a cluster of virtual machines with the following specifi-
cations: 16 cores and 32 GB of RAM. On the YARN cluster we had
a total of 14 virtual cores per instance and 9 instances total. Table 1
summarizes how each level of parallelism was achieved.
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(a) Speedup provided by the various optimizations (b) Effects of the various optimizations in the initialization and execu-
tion time of NLonSpark

Figure 3: Effects of optimizations on the execution time

Figure 4: Scalability ofNLonSpark for various degrees of par-
allelism

We evaluated NLonSpark both in terms of scalability and impact
of optimizations. Since NLonSpark is based on NaLIR, and we did
not change the underlying algorithms, NLonSpark has the same
accuracy of NL translation as NaLIR. Hence, we do not report any
accuracy numbers here.

As scalability, we mean the effect of added parallelism to the
total execution time of the application. As impact of optimizations,
we mean the effect of each optimization on the total execution time
of the application. To measure the impact of each optimization
in NLonSpark, we kept the degree of parallelism constant and
progressively enabled each optimization.

For the scalability and execution time, we used a total of 42
queries. The queries were hand crafted by us and model a vast array
of user interactions from simple queries such as "Find the number
of users called Michelle" to more difficult ones such as "List the most
crowded restaurant on Fridays". For the optimizations experiment,

we used a smaller set of queries because without the optimizations
NLonSpark execution takes a lot of time. This smaller subset of the
previous queries is of modest difficulty where the system managed
to find the right answer. Those queries included fields with both
small and large textual values, so in some part of the translation the
bloom filters failed and the importance of inverted indices becomes
apparent. Examples include: "List all the businesses with more than
4.5 stars" and "Find Italian restaurants with music".

As we can see from Figure 3a, bloom filters and inverted indices
significantly improve execution time. Using only bloom filters we
achieve a speedup of 5.7x whereas using both bloom filters and
inverted indices leads to a speedup of 13.7x compared to the un-
optimized version.

In Figure 3b, we can see the effects of the various optimizations
to the initialization and execution time of NLonSpark. Using only
bloom filters, the initialization time goes from 6.4 seconds to 83
seconds while the average execution time for a single query drops
from 52 seconds to 9.3 seconds. Adding inverted indices to the ap-
plication increases the initialization time to 116 seconds and the
average execution time for a single query to drop to 3.9 seconds.
Both optimizations thus proved worthwhile even when the system
is about to execute only a few queries. All the tests concerning the
optimizations were conducted with the maximum level of paral-
lelism to allow the un-optimized version to be as fast as possible.

Moving on to scalability, in Figure 4, we can see the effect of
parallelism on the index creation and average execution time for a
single query. For a single instance equipped with a single core the
initialisation time is 389 seconds. For parallelism equal to 7, it drops
to 138 seconds, for 14 to 112 seconds and it reaches its best value
for parallelism 56 with 88 seconds. Then, for 128 cores it increases
to 149 seconds. The average query execution time does not change
much with added parallelism mainly because querying the bloom
filters and inverted indices takes a negligible amount of time. The
added parallelism did however improve the index creation time
leading to a speedup of 4.4x.

In summary, a reasonable Natural Language-to-SQL translation
and execution functionality can be supported over Spark. The over-
head of porting a dataset on Spark (which entails the creation of
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foreign key constraints) is manageable. On the other hand, NaLIR’s
need for low-latency string lookups can be addressed by using a mix
of bloom filters and inverted indices, which reduces the execution
time providing substantial speedup.

6 DISCUSSION AND FUTUREWORK
In our attempt to add natural language capabilities to Apache Spark
we learned the following:
• The primitives available in Spark SQL were enough to create
an SQL abstraction layer so that NaLIR can work with Spark
instead of an RDBMS.
• The extensibility and flexibility of Apache Spark allowed us to
create the necessary structures to speed up execution signifi-
cantly.
• Spark built-in optimization primitives such as bloom filters
significantly boost performance in some scenarios.
As future work, we plan to adapt NLonSpark to run on multi-

application environments. The dataset is a Dataframe and the in-
dexes are RDDs so there are projects such as Apache Livy 1, Apache
Ignite 2 and Alluxio 3 that support sharing RDDs and Dataframes
amongst applications. In this way, different users can start different
instances of NLonSpark that will share the dataset and indexes. One
of the main challenges is that Spark cluster utilization is sensitive
to the resource manager. Resource managers decide how to allocate
cluster resources among the many users and applications contend-
ing for them, and this affects application performance. In this case,
we need new techniques for tuning Spark resource management to
optimize goals like speed and fairness as well as for sharing both
NL queries, their translations, and user feedback (apart from data
and indexes) among multiple users and applications.

7 CONCLUSIONS
In this paper, we have introduced NLonSpark, a system for Natural
Language to SQL translation and execution built on top of Apache
Spark. Using NLonSpark, the end user can query Apache Spark
datasets using Natural Language. As part of our implementation,
we built an abstraction layer to alleviate NaLIR’s dependency on
a traditional DBMS. We have also implemented and evaluated a
series of optimizations that significantly reduce the execution time
on NLonSpark compared to the naïve implementation, providing a
cumulative speedup of 13.7x.
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