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ABSTRACT
The utility function (UF) for ranking the views in traditional
view recommendation (VR) approaches is defined a priori,
thus failing to adapt to the analysis context, such as the cur-
rent user and the analysis task. To address this shortcoming,
we have proposed a new view recommendation paradigm,
called Interactive View Recommendation (IVR), and developed
an IVR framework, coined ViewSeeker, which uses a novel
active learning method to discover the UF. ViewSeeker ef-
fectively learns a UF of the linear form, which is assumed
by most VR approaches. In this paper, we claim that the
linear form is oversimplified and inaccurate, and UF should
be of multiple functional forms (e.g., linear, non-linear, addi-
tive, multiplicative, etc.). We also propose a general Utility
Function Form (UFF), that fulfills commonly accepted UF
properties. We then show that the commonly used learning
methods cannot learn the general UFF well or easily, and
propose specialized learning methods for learning certain
special forms of the general UFF in an IVR setting.
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1 INTRODUCTION
Visualization recommendation tools are being used exten-
sively nowadays to help users find interesting visualizations
(i.e., views) from data. These tools usually employee a utility
function (UF) to estimate the interestingness of the views and
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rank the views recommended to the users. A UF evaluates a
view with respect to different Utility Measures (UMs), each
representing an aspect of the view interestingness. Examples
of UMs are relevance [6], deviation [11], conciseness [4], etc.
The combined UM score produced by a UF for a view repre-
sents the degree of interestingness of the view. In traditional
View Recommendation (VR) approaches [7, 8, 10, 11, 13], the
UF is defined a priori. Thus, they cannot adapt to the anal-
ysis context, such as current user and analysis task. Some
recent VR approaches [4, 5, 9] offer limited adaptability for
a priori-selected UMs that form the UF.

In order to offer full adaptability, we have previously pro-
posed a new VR paradigm, called Interactive View Recommen-
dation (IVR), which aims to dynamically discover the most
suitable UF according to the analysis context during the anal-
ysis process [14, 15]. In addition, we have proposed a novel
IVR framework ViewSeeker [15], which automatically helps
the user in discovering the most suitable UF. ViewSeeker uses
a novel active learning method that effectively minimizes
the expensive user labeling effort during each IVR process
by leveraging a linear form of UF (i.e., UMs are linearly com-
bined in the UF) as prior knowledge.

Even though most VR approaches assume that the UF is of
a linear form, we propose that the linear form is oversimpli-
fied and inaccurate, as the UFs in real-world analytic tasks
are typically more complex. Below is an example to illustrate
this point.
Assume that a doctor is trying to discover interesting

views in clinical care data showing large differences between
female and male patients with diabetes. In such a setting,
a view showing small differences (i.e., low deviation) for
the test outcomes relevant to diabetes (i.e., high relevance)
will have low interestingness. Similarly, a view showing
large differences (i.e., high deviation) for the test outcomes
irrelevant to diabetes (i.e., low relevance) will also have low
interestingness.
It can be seen from the above example that the UF could

be in a form other than linear. Otherwise, at least one of the
views in the above example should have medium or high
interestingness. Motivated by this observation, in this paper,
we propose to develop a more general utility function form
(UFF) in order to cover a larger set of functions. Specifically,
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we make the following three major contributions in this
paper:
• We identify commonly accepted properties of the UFs,
and propose a general UFF that fulfills the identified
properties (Section 3).
• We experimentally show in ViewSeeker that the gen-
eral UFF cannot be learned well by commonly used
learning methods in an IVR setting (Sections 4 & 5).
• We propose specialized learning methods for certain
special forms of the general UFF, which can be used
jointly for view recommendation in an IVR setting
(Section 6).

In the next section, Section 2, we introduce IVR, which is
the foundation of our work in this paper.

2 BACKGROUND
In this section, we present the necessary background details
of our work. Specifically, we discussed view construction in
the database context, traditional VR approaches, and inter-
active VR approaches.

2.1 Views & Data Visualization
In the context of structural databases. A view (i.e., histogram
or bar chart) essentially represents an SQL query with a
group-by clause over a database D [4, 11].
Under the typical multi-dimensional data models, data

can be modeled as a set of measure attributes (i.e., numer-
ical attributes) M = {m1,m2,m3, ...} and a set of dimen-
sion attributes (i.e., categorical attributes) A = {a1,a2,a3, ...}.
The measured attributes are a set of attributes that contain
measurable value and can be aggregated. The dimension
attributes are the set of attributes on which measured at-
tributes are viewed. To formulate an SQL query with a group-
by clause, we need to have a set of aggregation functions
F = { f1, f2, f3, ...}. Thus, each view vi is the visualization of
the query result of applying an aggregation function f on a
measure attributem, and grouping the aggregated values by
a dimension attribute a.

Consequently, the View Space (VS), i.e., the total number
of possible views is:

VS = |A| × |M | × |F | (1)

Clearly, VS can be very large, especially for high-dimensional
data.

2.2 Traditional View Recommendation
In order to recommend the set of k most interesting views
from a large number of views, traditional VR approaches use
UFs to rank the views. A UF maps a view to a real number
indicating the interestingness of the view.

Definition 2.1. (Traditional VR Problem) Given a database
D, a UF u (), and the size of the preferred VRs k , find the
top-k views v1, v2, ..., vk constructed from D that have the
highest interestingness according to u () among all possible
views.

From the above definition, one can clearly see that in
the traditional VR approaches [4, 5, 7–11, 13], the UF u () is
defined a priori, so that it will not be able to adapt to different
analysis context such as the current user, the analysis task.

2.3 Interactive View Recommendation
To make the UFs adaptive to the analysis context, we have
proposed Interactive View Recommendation (IVR) as a new
VR paradigm [14, 15].

Definition 2.2. (The IVR Problem) Given a database D, a set
of functions to calculate the UMs U = {u1 (),u2 (), ...,un ()},
and the size of the preferred VRs k , find the top-k views v1,
v2, ..., vk constructed from D that have the highest interest-
ingness according tou () among all possible views, whereu ()
can be any combination of the functions in U , and is most
suitable for the current analysis context.

In our IVR paradigm, the VR system interacts with the
user during the analysis process to automatically learn the
UF u () that is most suitable for the current analysis context.
An example is to ask the user to label example views with
real numbers between 0 and 1 (with 0 being not interesting
and 1 being most interesting), and use different learning
methods to learn the UF based on user labels.
We call the functional form of the UF over the UMs, the

utility function form (UFF), which defines the set of functions
that can be used to combine the UMs. In most VR approaches,
as well as In our previous work, the UFF is linear as shown
below:

u () =
n∑
i=1

(αi × ui ()) (2)

where u () is the UF, ui ()’s are the functions to calculate
the individual UMs, and αi ’s are non-negative real numbers
representing the weights of the UMs with the sum of all αi ’s
being 1.

3 GENERAL UTILITY FUNCTION FORM
As discussed in the Introduction, the linear assumption of
UFF is oversimplified, and fails to capture the complexity
of UFs in real-world analytics. In this section, we develop a
general UFF in three steps. Firstly, we identify the commonly
accepted properties of UFs. Secondly, we analyze which prop-
erties can be fulfilled by a linear UFF, and which properties
can not. Finally, we propose new UFFs that can fulfill the
additional properties that are not fulfilled by a linear UFF.



Step 1 The UFs used in current VR approaches usually
have the following properties: (i) A UF involves one or more
UMs (P1). (ii) Each UM usually is a real number between 0
and 1 (P2). The higher the value, the more interesting the
view is with respect to the UM. (iii) The final score from the
UF is also a real number between 0 and 1 (P3). The higher the
value, the more interesting the view is. (iv) The final score
from the UF will increase if one involved UM increases, and
the others remain the same (P4). In other words, the UF is
monotonic with respect to each UM.

Step 2 It can be seen that the linear UFF in Equation 2
fulfills the above four properties. However, there are other
properties of a UF that a linear UFF does not fulfill.

Step 3 The first additional property is that dropping the
score of certain UM to zero should bring the view interestingness
to zero (P5). It can be easily seen that this property cannot
be fulfilled by a UFF in an additive form, because dropping
to zero of any term in an additive function will not bring
the function value to zero. In order to fulfill this property P5
capturing UM importance, we propose that a UF should be
in a multiplicative form, as shown in Equation 3:

u () =
n∏
i=1

ui () (3)

It is worth noting that this multiplicative form also captures
the UFF mentioned in [12] and used in [3].
The second additional property is that not all UMs will

bring the view interestingness to zero when their score drop
to zero (P6). In order to fulfill this property, we propose to
group similar UMs together, and add an offset term to each
group, as shown in Equation 4:

u () =
n∏
i=1

*.
,

m∑
j=1

ui j () + bi
+/
-

(4)

where bi ’s are non-negative real numbers representing the
offset terms.

Note that we have omitted any non-essential slope/offset
constants in Equation 4 for conciseness reasons. This rule
applies to all the UFFs introduced in this paper.
It can be seen that the UMs are divided into n groups, so

that the UMs in the same group evaluate the view interest-
ingness from similar aspects. Each group involvesm UMs
and an offset term bi . If a UM brings the view interestingness
to zero when it drops to zero, then it will be in its own group
(i.e., m = 1), and the offset of the group will be zero (i.e.,
bi = 0). Otherwise,m > 1 or bi > 0 or both.

The third additional property is that the influence of each
UM might not be constant over the domain of the UM (P7). We
define the influence of a UM to be the partial derivative of
the view interestingness over the UM (i.e., ∂u ()/∂ui j ()). In
order to fulfill this property, we propose to add exponents

to the UMs, so that the resulting UFF will be able to express
the influence changes, as shown in Equation 5:

u () =
n∏
i=1

*.
,

m∑
j=1

ui j ()
ei j + bi

+/
-

(5)

where the ei j ’s are non-negative real numbers representing
the exponents.

Since each UM is between 0 and 1, then a exponent e larger
than 1 will be able to express the situation when the influence
of the UM is smaller in the lower part of its domain and larger
in the higher part of its domain. Similarly, an exponent e
between 0 and 1 will be able to express the situation when
the influence of the UM is larger in the lower part of its
domain and smaller in the higher part of its domain.

Equation 5 is the general UFF that we propose in this paper.
It not only fulfills the four initial properties of a UF (P1-P4),
but also fulfills the three additional properties (P5-P7) that a
linear UFF does not fulfill.

It should be clear that the general UFF (Equation 5) covers
a much larger set of possible functions than the linear UFF
(Equation 2). Actually, the linear form is a special form of the
general form since the linear form can be derived from the
general form by restricting the number of groups to one (i.e.,
n = 1), the offset in the group to zero (i.e., b1 = 0), and the
exponents for the UMs in the group to one (i.e., e1j = 1).
As discussed below, our experimental evaluation of the

performance of commonly used learningmethods on the gen-
eral UFF led us to propose two special forms of the general
UFF in Section 6.

4 EXPERIMENTAL TESTBED
In this section, we will discuss the experimental testbed and
the sets of experiments to be conducted.

Dataset We use the Diabetes dataset [1] in the experiments.
The dataset contains 10 years (1999-2008) of clinical care
data from 130 US hospitals and integrated delivery networks
pertaining to patients with diabetes. It has 100,000 tuples,
and 15 attributes, among which 7 are dimension attributes
(i.e., categorical attributes) and 8 are measure attributes (i.e.,
numerical attributes).

Analysis TaskWe assume an analysis task of comparing the
clinical care data between female and male patients. For view
generation, we create a data subset for each gender, generate
all possible views for each subset, and combine each view
with the corresponding view from the opposite gender to
form a comparison view (also called a view for simplicity
reasons). With the remaining 6 dimension attributes (gender
is used to split the data), the 8 measure attributes, and 5
aggregation functions, there are a total of 240 possible views.



Utility MeasuresWe use three UMs as the representation
for each view in the experiments. The first one is deviation as
described in [11]. It measures the difference in the aggregate
values between the two data subsets. The second one is
conciseness as described in [4]. It measures the easiness of
the view to be understood and remembered. The third one
is generality as described in [6]. It measures how well the
patterns in the view be generalized to the whole dataset. We
define the generality of a view to being the ratio between
the number of tuples with no missing measure attribute
value and the number of tuples in the dataset. Since there is
no missing data in the dataset, we have randomly assigned
generality between 0.2 and 0.9 to the 8 measure attributes in
the dataset.
IVRWorkflow All experiments are run on the ViewSeeker
platform [15]. Specifically, we set a ground truth UF, and
let the system interact with the user to try to learn the UF.
The system interacts with the user in an iterative fashion. In
each iteration of the interaction, there are four steps: First,
example views are randomly selected from all possible views.
Second, labels for the example views are acquired from the
simulated-user based on the ground truth UF. The label is
in the form of a real number between 0 and 1, with 0 being
not interesting at all, and 1 being the most interesting. Third,
learners are trained from scratch on all example views with
the UMs of a view as input features and the user label as
the target label. Finally, all views are ranked based on the
model prediction, and top-k views are recommended to the
user. If the user is not satisfied with the recommendation,
the system will go back to step one and start a new iteration.
Learning Methods Since the input features (i.e., UMs) and
the user labels are all real numbers, we choose to use regres-
sion models as the learning methods [2]. We used eight re-
gressionmodels in the experiments. They are linear regressor,
kernel ridge regressor, support vector regressor, k-nearest
neighbor regressor, gaussian process regressor, decision tree
regressor, gradient boosting regressor, and multi-layer per-
ceptron regressor.
EvaluationMeasureAssuming that the top-k views ranked
by the ground truth UF is V ∗ and the top-k views ranked by
the regression model are V , then the evaluation measure is
the ratio between the cardinality of the intersected views
between V ∗ and V , and the k , namely:

|V ∗ ∩V |/k (6)

We call Equation 6 the recommendation accuracy, or accuracy
for short. We measure the accuracy of the regression model
with the highest accuracy after 10 example views have been
labeled—we assume that 10 is an ideal number of examples
that a user is willing to label in IVR. This rule of 10 example
labeling applies to all experiments in this paper.

Table 1: Testbed Parameters

Total number of records 100, 000
Dimension attribute count 6
Measure attribute count 8
Aggregation function count 5
All possible view count 240
Individual utility measure count 3
Regression model count 8
Regression model hyperparameters default values
Example view selection strategy random
Example view count per iteration 1
Total iteration count 10
Performance measurement Top-k accuracy
Accuracy model base best performing model
Recommend view count (k) 5,10,15,20,25,30
Runs for each configuration 5

SetupOur experiments were performed on a Corei7machine
with 16GB of RAM memory. The platform is implemented
in Python.

Experiments We conduct three sets of experiments. In the
first set, the ground truth UF is in the general UFF (Equation
5). In the second set, the ground truth UF is in a special form
of the general UFF, introduced in Section 6.1. In the third set,
the ground truth UF is in another special form of the general
UFF, introduced in Section 6.2.

The experimental parameters are summarized in Table 1.

5 GENERAL UFF EVALUATION
In the first set of experiments, we have tested six ground
truth UFs in the general UFF. They are functions A1 to A6 in
Table 2. The recommendation accuracy is shown in Figure 1
to Figure 6.
The average accuracies over the top-k’s for the six func-

tions are 58.6%, 78.3%, 85.7%, 92.2%, 80.0%, and 78.0%. The
average accuracy over all functions is 78.8%.
This percentage is certainly not high accuracy. This in-

dicates that the commonly used regression models cannot
easily learnwell the general formUFswith the default learner
hyper-parameters and small amount of example views. Note
that the accuracy increases to 95% with 120 example views.
However, this is a high number of examples based on the as-
sumed ideal/expected number of labeling in the IVR setting.
As a first step in addressing this challenge, in the next

section we consider special forms of UFF that can be effi-
ciently learned in IVR. As part of our future work, we will
evaluate other learning methods capable of accurately and
easily learning the general UFF.



Table 2: Ground Truth Utility Functions
(D: Deviation, C: Conciseness, G: Generality)

# Utility Function
A1 D0.5 × (C + 0.1) × (G + 0.2)2

A2 D0.5 × (C + 0.2)2 × (G + 0.1)
A3 (D + 0.1) ×C0.5 × (G + 0.2)2

A4 (D + 0.1) × (C + 0.2)2 ×G0.5

A5 (D + 0.2)2 ×C0.5 × (G + 0.1)
A6 (D + 0.2)2 × (C + 0.1) ×G0.5

B1 D × (C + 0.1) × (G + 0.2)
B2 D × (C + 0.2) × (G + 0.1)
B3 (D + 0.1) ×C × (G + 0.2)
B4 (D + 0.1) × (C + 0.2) ×G
B5 (D + 0.2) ×C × (G + 0.1)
B6 (D + 0.2) × (C + 0.1) ×G
C1 D0.5 ×C ×G2

C2 D0.5 ×C2 ×G

C3 D ×C0.5 ×G2

C4 D ×C2 ×G0.5

C5 D2 ×C0.5 ×G

C6 D2 ×C ×G0.5

6 SPECIAL FORMS OF GENERAL UFF
In this section, we introduce two special forms of the general
UFF. These specialized learning methods can be jointly used
in an IVR setting to provide view recommendations.

6.1 No Exponent UFF
The first special form we are going to introduce is called the
No Exponent (NE) form:

u () =
n∏
i=1

*.
,

m∑
j=1

ui j () + bi
+/
-

(7)

This form can be derived from the general form by having
the exponent terms to be zero (i.e., ei j = 0).

We have tested six ground truth UFs in the NE form. They
are functions B1 to B6 in Table 2. The recommendation ac-
curacy is shown in Figure 7 to Figure 12.

The baseline uses the original features, i.e., the UMs. The
average accuracies over the top-k’s for the six functions are
86.7%, 90.5%, 73.5%, 89.8%, 86.8%, and 83.4%. And the average
accuracy over all functions is low, at 85.1%. The result for
the baseline shows that the regression models cannot learn
the NE form very well.

Therefore, we have developed a specialized learningmethod
that extends the baseline with feature engineering. Specifi-
cally, we create new features that are multiplication of the

original features (i.e., UMs). For example, if each view has
three features A, B, and C , then we will create four addi-
tional features AB, AC , BC , and ABC for each view. The new
features are created in the hope to catch the new variables
generated by the NE form, to make the UF easier for the
regression models to learn.
The experimental results have supported our hypothesis.

The average accuracies over the top-k’s for the six functions
are 100%, 100%, 100%, 100%, 100%, and 99.4%. The average
accuracy over all functions is 99.9%, which is satisfactory.
The results show the effectiveness of our proposed method,
which has an accuracy increase of 14.8% over the baseline.

6.2 Pure Multiplicative UFF
The second special form we are going to introduce is called
the Pure Multiplicative (PM) form:

u () =
n∏
i=1

ui ()
ei (8)

This form can be derived from the general form by having
each group involving one UM (i.e.,mi = 1) and having the
offset terms to be zero (i.e., bi = 0).

We have tested six ground truth UFs in the PM form. They
are functions C1 to C6 in Table 2. The recommendation
accuracy is shown in Figure 13 to Figure 18.

The baseline uses regression models directly. The average
accuracies over the top-k’s for the six functions are 49.1%,
39.1%, 83.7%, 33.8%, 94.9%, and 88.9%. And the average accu-
racy over all functions is very low, at 64.9%. The result for
the baseline shows that the regression models cannot learn
the PM form well.

Therefore, we have developed a simple yet effectivemethod
to help the regression models to learn the PM form accu-
rately. Our method takes the logarithm of both the input
features (i.e., UMs) and the label (i.e., view interestingness),
before providing them to the regression models for training.
Our method will also take a logarithm of the features before
providing them to the regression models for prediction. The
UFF after the logarithm operation of both sides of the PM
form in Equation 8 is:

loд(u ()) =
n∑
i=1

ei × loд(ui ()) (9)

The intuition behind using the logarithm operation on the
features and labels is that the logarithm operation will map
the multiplicative form to additive form (Equation 9), which
is much easier for the regression models to learn.
The experimental results have supported our hypothesis.

The average accuracies over the top-k’s for the six functions



Figure 1: Accuracy
for function A1.

Figure 2: Accuracy
for function A2

Figure 3: Accuracy
for function A3

Figure 4: Accuracy
for function A4

Figure 5: Accuracy
for function A5

Figure 6: Accuracy
for function A6

Figure 7: Accuracy for func-
tion B1.

Figure 8: Accuracy for func-
tion B2.

Figure 9: Accuracy for func-
tion B3.

Figure 10: Accuracy for func-
tion B4.

Figure 11: Accuracy for func-
tion B5.

Figure 12: Accuracy for func-
tion B6.

Figure 13: Accuracy compari-
son for function C1.

Figure 14: Accuracy compari-
son for function C2.

Figure 15: Accuracy compari-
son for function C3.

Figure 16: Accuracy compari-
son for function C4.

Figure 17: Accuracy compari-
son for function C5.

Figure 18: Accuracy compari-
son for function C6.

are all 100%, which is very satisfactory. The results demon-
strate the effectiveness of our proposed method, which has
an accuracy increase of 35.1% over the baseline.

7 CONCLUSION
In this paper, we first claim that the linear UFF assumption in
most VR approaches is oversimplified and inaccurate. Then
we analyze the commonly accepted properties of a UF, and
propose a general UFF that fulfills all identified properties.

Next, we experimentally show that the commonly used re-
gression models cannot learn the general UFF well or easily.
Finally, we propose specialized learning methods for certain
special forms of the general UFF, which can be used jointly
in an IVR setting for view recommendation.

Our next step is to conduct user studies to verify the effec-
tiveness of the proposed general/special UFFs, and improve
the learning methods for the general UFF in an IVR setting.
Acknowledgment: This work was partially supported by
NIH award U01HL137159 and reflects the authors opinions.
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