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ABSTRACT
It is well-known that the process of developing machine learn-
ing (ML) workflows is a dark-art; even experts struggle to find an
optimal workflow leading to a high accuracy model. Users cur-
rently rely on empirical trial-and-error to obtain their own set of
battle-tested guidelines to inform their modeling decisions. In this
study, we aim to demystify this dark art by understanding how
people iterate on ML workflows in practice. We analyze over 475k
user-generated workflows on OpenML, an open-source platform
for tracking and sharing ML workflows. We find that users often
adopt a manual, automated, or mixed approach when iterating
on their workflows. We observe that manual approaches result in
fewer wasted iterations compared to automated approaches. Yet,
automated approaches often involve more preprocessing and hy-
perparameter options explored, resulting in higher performance
overall—suggesting potential benefits for a human-in-the-loop ML
system that appropriately recommends a clever combination of the
two strategies.
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1 INTRODUCTION
Machine learning (ML) has become a critical component of almost
every domain, with users of all different levels of expertise rely-
ing on ML models to accomplish specific tasks. Developing an ML
workflow can be tedious and time-consuming. Anecdotally, it may
take dozens of iterations for a novice to converge on a satisfactory
combination of ML model type, hyperparameters, and data prepro-
cessing. Meanwhile, an expert might need only a small number
of modifications to their original workflow to achieve comparable
performance on the same task. In such cases, novices can benefit
greatly from learning strategies employed by experts to accelerate
the process of developing effective ML workflows. With a large-
scale database of user-generated workflows and evaluation scores,
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it becomes possible to extract aggregate workflow iteration patterns
to enable this transfer of knowledge.

In this work, we present useful insights about ML workflow de-
velopment behavior of users on the OpenML[18] platform. OpenML
is an open-source, hosted platform for users to upload datasets and
run ML workflows on these datasets by calling an API. A relatively
diverse mix of user skill levels is present on OpenML, from students
just getting started with ML to experienced data scientists and ML
researchers. OpenML publishes a database of the user-uploaded
datasets as well as the workflow specifications submitted by users
and their corresponding executions. By performing targeted analy-
ses on the most common ML models and preprocessing operators
as well as their associated performance, we shed light on common
ML workflow design patterns and their general effectiveness. We
study trends in iterative ML workflow changes across 295 users,
475,297 runs, and 793 tasks on the OpenML platform; and draw
quantitative conclusions from this crowd-sourced dataset, leading
to actionable insights that help inform the development of future
human-in-the-loop ML systems targeting novices and experts alike.

Our main contributions can be summarized as follows:
• We characterize the frequency and performance of popular
ML models and preprocessing operators used by OpenML
users. We highlight the impact of the operator combinations
and discuss their implications on general user awareness (or
lack thereof) of particular ML concepts (Section 4).

• We analyze sequences of changes to workflows to extract dif-
ferent styles of ML workflow iteration and shed light on the
most common types of changes for each iteration style, the
amount of exploration typically performed, and performance
gain users are generally able to achieve (Section 5).

• We conduct case studies on exemplary instances to under-
stand effective iteration practices. (Section 6).

2 RELATEDWORK
There is an incredible wealth of knowledge that can inform the
design of automated and semi-automated ML (autoML) systems
by understanding how people develop machine learning models.
Studies through empirical code analysis and qualitative studies
offer different lenses into studying human-centered practices in
developing ML workflows.

Psallidas et al.[14] analyzed publicly-available computational
notebooks and enterprise data science code and pipelines to illus-
trate growing trends and usage behavior of data science tools. Other
studies have employed qualitative, semi-structured interviews to
study how different groups of users engage with ML development,
including how software engineers [2] and non-experts [21] develop
ML-based applications, and how ML practitioners iterate on their
data in ML development [8].
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In this paper, we analyze practices and behaviors for users iterat-
ing on ML workflows, based on data collected from OpenML [18]—
an online platform for organizing and sharing ML experiments
to encourage open science and collaboration. Data from OpenML
has been used extensively for meta-learning [17] to recommend
optimal workflow configurations, such as preprocessing [4, 13], hy-
perparameters [16], and models [3, 15] for a given dataset and task.
Benchmark datasets from OpenML, as well as other similar dataset
repositories [1, 11], have also been used for evaluating AutoML
algorithms [5–7]. However, these papers focus solely on using the
dataset, model and result from each workflow and do not study the
iterative behavior of users.

Our paper differs from existing work in that we analyze the
trace of user-generated ML workflow iterations leading to insights
such as which stages (preprocessing, model selection, hyperparam-
eter tuning) users focus most of their iterations on, their impact
on the effectiveness of the workflow, and which specific combina-
tions of model and preprocessing operators are the most widely
used. Our approach offers a more reliable view of iterative ML de-
velopment than the previous work using experiments reported in
applied ML papers to approximate iterations [20]. Moreover, our
study offers a complementary perspective to existing interview
studies by providing empirical (based on code), population-level
statistics and insights on how people iterate on machine learning
workflows. These insights are valuable for helping AutoML and
mixed-initiative-ML system builders understand the trends in the
ML development practices of target users.

3 DATA & METHODOLOGY
We define important terms used in our study, describe our dataset,
and define the metrics for quantifying user effectiveness.

3.1 Terminology
In ML development, a user creates a workflow to accomplish a
specific task and iterates on the workflow over a sequence of runs.
• Task: A task consists of a dataset along with a machine learning
objective, such as clustering or supervised classification.

• Workflow: A workflow is a directed acyclic graph of data pre-
processing and ML model operators with their associated hyper-
parameters.

• Run: A run is a workflow applied to a particular task. Each run
is associated with performance measures, such as classification
accuracy or Area Under the ROC Curve (AUC).

• Sequence: A sequence consists of the time-ordered set of runs
from a single user for a particular task.

3.2 The Dataset
Our dataset is derived from a snapshot of the OpenML database
from December 4, 2019. We focus on a specific subset of the runs
on OpenML that a) were uploaded by users who are not OpenML
developers1 or bots2, to focus on realistic human user behavior, b)
use the Scikit-Learn package [12], to increase the fidelity of our
data extraction by focusing on a single popular ML package used in

1We filtered out runs uploaded by the core team and key contributors listed on https:
//www.openml.org/contact.
2We also filtered out runs uploaded by users whose names contained “bot.” Removing
developers and bots left us with 6.1% of the total number of runs on OpenML.

79% of the non-developer/non-bot runs, and c) have an associated
AUC score associated with them. This subset contains 475,297 runs
(4.8% of the total number of runs)
Limitations:While the OpenML dataset provides a valuable probe
into how users iterate on ML models, the typical OpenML user may
not be representative of general ML practitioners. The OpenML
traces provide a limited view of the user’s motivation and thought
process behind their iteration choices. Our following analysis is
intended to present a formative picture of how people iterate in
ML development. Future studies with larger sample sizes and more
representative samples are required to generalize these findings.

3.3 Workflow Effectiveness Metrics
Due to the variability in the range of evaluation metric values
across tasks, raw AUC values of runs are not directly comparable
across tasks. Instead, we account for the difficulty of each task by
measuring relative AUC. For a run 𝑟 , let 𝑎𝑟 be its raw AUC on the
corresponding task 𝑡 . The relative AUC of a run 𝑟 , is defined as
𝑝𝑟 = 𝑎𝑟 − 𝜇𝑡 , where 𝜇𝑡 is the average AUC of all of the runs for
task 𝑡 . We measure the performance of a sequence 𝑆 by the relative
maximum sequence AUC, 𝑝𝑆 = max𝑟 ∈𝑆 𝑎𝑟 − 1

|T𝑡 |
∑
𝑄 ∈T𝑡 max𝑞∈𝑄 𝑎𝑞 ,

where T𝑡 is the set of all sequences for task 𝑡 . In other words, 𝑝𝑆
is the difference between the maximum AUC in the sequence 𝑆
and the mean of the maximum AUCs of all sequences for task 𝑡 .
We use maximum AUC per sequence to capture the fact that the
best-performing workflow out of all attempts is the final one that
the user adopts.

4 RUN-LEVEL INSIGHTS
To better understand how users develop ML workflows, we first
sought to understand: What are the most prevalent ML operators in
practice? In what combinations are these operators used together and
when do they lead to better performance?

Figure 1 shows the most common model and preprocessing com-
binations used by more than four users on OpenML. Ensemble
models that combine one or more base estimators were excluded
from the plot, to avoid duplication with other base estimators. The
color indicates the performance of the combination, measured by 𝑝𝑟 ,
averaged over all runs that include the combination, while the size
of each circle is scaled by the number of users (Figure 1 top) and runs
(Figure 1 bottom) that contain the specific combinations. Both the
rows and columns are sorted based on their performance across all
of the specified operators. In other words, the best-performing com-
binations are located at the top-right corner of the chart, whereas
the worst-performing combinations are on the bottom-left.

Histograms showing the marginal distribution of frequency and
performance for each operator are displayed on the sides. For in-
stance, the uppermost user frequency histogram shows the average
user count for each preprocessing operator, averaged across the
models that were used in combination with it, normalized by the
total number of users.

We highlight various insights from Figure 1, with the enumerated
points corresponding to the enumerated boxed regions in the figure.
(1) Performance of Specific Combinations: Some combinations
consistently yield high relative AUC when compared to other com-
binations used for the same ML task. For instance, there is a clear
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Figure 1: Frequency and performance of the most com-
mon (Scikit-Learn model, preprocessing) combinations on
OpenML. The top displays frequency in terms of the user
count, while the bottom shows run count.

difference in performance between Random Forest (1a), the model
used by the most OpenML users, and SVC (C-Support Vector Clas-
sification) (1b), the model used in the most runs. On average, the
relative AUC of runs that include Random Forest (RF) is 𝑝𝑟 = 9.89%.
RF works especially well with SimpleImputer as an added prepro-
cessing step, achieving 𝑝𝑟 = 15.57% on average. On the other hand,
users tend to perform worse on average (𝑝𝑟 = −7.84%) when using
SVC models for OpenML tasks.
(2) Effect of Preprocessing: Around 81% of users have run ML
models on a dataset without performing any data preprocessing
beforehand (2a). This could be attributed to the fact that many of
the datasets on OpenML are already in a relatively clean, prepro-
cessed state. However, it is evident from Figure 1 that users can
often still achieve higher performance by including some form of
dimensionality reduction, feature scaling and transformations, or
data sampling, indicating how preprocessing is often an overlooked
but important aspect in ML development. For instance, ADASYN and
SMOTE [10] are two preprocessing operations that work remark-
ably well when combined with the K-Nearest Neighbors (KNN)

Model Run Freq User Freq Avg 𝑝𝑟

DecisionTree 65.64% 6.06% 0.57%
KNeighbors 19.02% 60.61% 0.48%

RandomForest 9.82% 18.18% 3.1%

Table 1: Frequency and average distance from task mean
AUC of the most commonly used models for large datasets.

model, but they are adopted by very few users (2b). This phenome-
non suggests that there needs to be increased awareness of such
preprocessing methods.
(3) Frequency of Specific Combinations: The frequency distri-
butions for both models and preprocessing operators vary depend-
ing on whether we look at the number of runs or the number of
users (shown in box 3). For example, the most popular model mea-
sured by the number of unique users is RF (used by 68.2% of users
in our dataset) followed by KNN (37.4% of users), with SVC in third
place (24.2% of users). However, when determining frequency from
the perspective of the number of runs that included the model, SVC
makes up ≈ 50% of the runs in our dataset, while RF accounts for
< 40% of the runs. This suggests that there are variations in the
iteration behavior across different users: some focus on tuning the
same model for many iterations, while others experiment with sev-
eral different models. We explore these trends and provide insights
on their effectiveness in the Section 5.
Application of Run-Level Insights:Analyses such as those high-
lighted from (1)-(3) not only shed light on the usefulness of partic-
ular ML operators, but they can also be used to validate whether
users’ existing practices aligns with conventional wisdom in the
form of guidelines from the ML community or whether there is a
gap in adopting these guidelines. As an example of this applica-
tion, we examine a particular case study of how users select which
models to use for handling large datasets.

First of all, we observe that for large datasets, users do indeed
focus on specific models in a different distribution than the overall
trends shown in Figure 1. Table 1 shows the model frequencies for
only the runs on large datasets (with greater than 110,313 instances—
the mean across all the datasets that Scikit-Learn users constructed
workflows for).

According to conventional guidelines [19], Decision Trees and
ensemble methods like RF are well-suited for medium to large
datasets, while KNN works well for small to medium datasets. Al-
though Decision Tree makes up 65.64% of the runs, it is used by
only 6% of the users. Instead, 60% of the users opted for KNN for the
largest datasets on OpenML. However, KNN resulted in the lowest
performance, (average 𝑝𝑟 = 0.48%), compared to average 𝑝𝑟 = 3.1%
for RF and 0.57% for Decision Tree. While the performance validates
the efficacy of the guidelines, the usage statistics reveal that most
users fail to follow these guidelines.

Insights drawn from empirical run-level data as demonstrated in
this section can inform the ML community about the prevalence of
different operators and whether or not users are able to effectively
use them. By knowing which models and preprocessing operators
are most commonly used in practice, ML system designers can
learn which operations users are already aware of and able to
utilize successfully, as well as which ones people are less likely to
use yet have high potential for large performance improvements. A
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human-in-the-loopML system [9] could surface these lesser-known
but high-potential operators to educate the users and bridge the
gap between the system’s capabilities and the user’s knowledge on
specific capabilities.

To better understand how users are constructing their workflows,
next, we delve into how users are iterating on their workflows and
the impact of different aspects of these iterative changes on the
performance of the workflows.

5 SEQUENCE-LEVEL INSIGHTS
Users have a wide range of ML workflow development styles—
some use a more manual approach where they run a model, look
at the results, make a change or two to address the issue, and
then repeat the process. Others may choose a more automated
technique, e.g., looping through a set of pre-determined values for
certain hyperparameters of a model. In themanual case, the human
remains in the loop, while in the automated case, the user has already
set a search space a-priori and the changes to the workflow at each
iteration are independent of the previous iteration’s result. Others
use a mixed sometimes-manual, sometimes-automated strategy.

To classify a sequence as manual, automated, and mixed, we
introduce the following metrics.
• Interval (Δ𝑡 ): difference between start times of consecutive runs
• Interval difference (Δ2𝑡 ): difference between consecutive Δ𝑡s
• Sequence length (|𝑆 |): the number of runs in sequence 𝑆
Based on these metrics, we categorize each sequence 𝑆 as follows:
• Manual: (|𝑆 | ≤ 2, OR Δ𝑡 > 10 minutes for ≥ 50% of the runs in
the sequence, OR Δ2𝑡 > 3 minutes for ≥ 75% of the runs in the
sequence), AND |𝑆 | < 300

• Automated (Auto): |𝑆 | > 2, AND Δ𝑡 > 10 minutes for < 50% of
the runs in the sequence, AND Δ2𝑡 > 3 minutes for ≤ 25% of the
runs in the sequence

• Mixed: the remaining sequences not in the two categories above
The thresholds were empirically determined through a process
of random sampling and spot-checking two sequences from the
manual category that had over 30 iterations and two from the
automated category that had under 30 iterations (since these would
be the more ambiguous cases than shorter manual sequences and
longer auto sequences). After the final thresholds were set, five
sequences from each of the categories were randomly sampled and
spot-checked to validate the sequence labels.

The motivation behind looking at both Δ𝑡 and Δ2𝑡 is that we
would expect the actual time difference between run submissions to
be at least a couple of minutes if the user was making adjustments
manually, and we would expect the change in these Δ𝑡 ’s to also be
non-zero due to the variability in making changes (while constant
time differences are often indicative of a loop). Sequence length
is also highly indicative of whether or not most of the runs were
manual, since it would be unlikely to find hundreds or thousands
of manual runs, and indeed the highest number of runs in a manual
sequence (after setting the 300 iteration threshold) is 69. This cate-
gorization results in 2181 manual, 208 automated, and 168 mixed
sequences.

Overall, we observe that users who adopt amore hands-on approach
achieve good performance much faster than users who automate the
search. Across the three categories, users exert varying amounts of

Figure 2: (a) Cumulative distribution of sequence length, (b)
% iterations after reaching maximum AUC.

Figure 3: Cumulative distribution of (a) model and (b) pre-
processing operators used across all iterations in a sequence.

effort (number of iterations and number of model and preprocess-
ing combinations attempted) and focus on different areas of their
workflow (choosing the best model, optimizing a hyperparameter,
or determining which data preprocessing operation to add). Our
in-depth analyses of the three categories of sequences reveal three
major insights on the effectiveness of users iterating with manual
and automated iterations, described next.

5.1 On Efficiency
Users iteratingwithmanual sequences aremore efficient,
achieving the same performance gain in a small frac-
tion of the number of iterations as automated sequences,
while wasting fewer iterations searching after reaching
their highest-performing workflow. However, users iter-
ating with automated sequences reach a higher 𝑝𝑆 than
manual for the same task.
Figure 2(a) shows that the distribution of the number of iterations

per sequence is drastically different for each sequence category.
Manual sequences are short (𝜇 = 3.24, 𝜎 = 3.88) and automated
sequences are the longest (𝜇 = 2183.99, 𝜎 = 1953.74), while mixed
lies somewhere in-between (𝜇 = 83.14, 𝜎 = 283.98). Even though
manual sequences are on average < 0.2% the length of automated
sequences, within the same span of time, the maximum increase in
AUC is equal for manual and automated (manual: 𝜇 = 6.63%, 𝜎 =

8.65%; auto: 𝜇 = 7.06%, 𝜎 = 12.66%)3. Moreover, Figure 2(b) shows
that the manual group has a lower percentage of wasted iterations,
i.e., the iterations after 𝑝𝑆 has been achieved, than the other two
groups (manual: 𝜇 = 31%; mixed: 𝜇 = 49%; auto: 𝜇 = 47%). This
means that on average, manual users waste 1 iteration, mixed users
waste 41 iterations, and auto users waste 1026 iterations.

3Sequences with a length of 1 were excluded from this and other appropriate analyses
in this section to avoid inflation by deltas of 0, counts of 1, or percentages of 100.
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Change Type Manual Mixed Auto

Model Operator 45.04% 3.95% 0.18%
Model Hyperparameter 28.31% 75.23% 92.69%
Preprocessing Operator 0.53% 0.55% 0.01%

Preprocessing Hyperparameter 0.18% 0.17% 0.04%
Model & Preprocessing 21.96% 6.60% 5.45%

No Change 3.98% 13.49% 1.63%

Table 2: Change types for manual, mixed, and automated.

However, automated and mixed sequences result in a 3% higher
𝑝𝑆 compared to manual sequences for the same task. This is likely
due to a greater coverage of search space from the mixed and auto-
mated sequences compared to manual. There is a delicate balance
between iterating in an efficient manner but exploring enough to
achieve better results. We now detail our approach to quantitatively
estimating a sequence’s breadth of exploration.

5.2 On Exploration
Exploring more model and preprocessing operators

leads to higher 𝑝𝑆 in manual sequences but does not im-
prove 𝑝𝑆 in automated sequences. Users iterating with
manual sequences cover the samenumber ofmodel types
as automated sequences, but a lower variety of prepro-
cessing techniques.

As shown in Figure 3, manual sequences explore a similar num-
ber of models as mixed and automated sequences (manual: 𝜇 =

3.08, 𝜎 = 1.63; mixed: 𝜇 = 2.64, 𝜎 = 1.37; auto: 𝜇 = 3.31, 𝜎 = 1.48).
However, there tends to be less manual exploration on data pre-
processing when compared to the mixed and automated groups
(manual: 𝜇 = 1.51, 𝜎 = 1.82; mixed: 𝜇 = 2.49, 𝜎 = 1.44; auto:
𝜇 = 3.22, 𝜎 = 1.91). It is interesting to note that automated se-
quences explore the same number of preprocessing operators as
models on average, while manual sequences have a higher tendency
to completely leave out data preprocessing from their workflows.

When examining the number of model and preprocessing op-
erators jointly, as shown in Figure 4, we can see that for manual
iterations, trying more combinations leads to better performance,
but this is not the case in mixed and auto sequences. For each of the
combinations that auto sequences explore, they typically perform
many more iterations of hyperparameter tuning than manual se-
quences do for a given combination, evident from the fact that most
auto iteration sequences comprise of hyperparameter tuning, as
shown in Table 2, and that auto sequences are much longer. These
trends reveal two phenomena: 1) when a combination is explored
using default or rule-of-thumb hyperparameters in just a few itera-
tions, as is the case in typical manual sequences, the performance
gap between different combinations is large; 2) when a combination
is explored with many hyperparameter tuning iterations, as is the
case in typical auto sequences, the performance gap shrinks be-
tween different combinations, leading to diminishing returns from
exploring more combinations on 𝑝𝑆 improvement. In other words,
auto sequences often waste most iterations on hyperparameter
tuning to improve the performance of suboptimal combinations
without improving 𝑝𝑆 , while the potential of a combination can
be estimated quickly with just a few iterations. However, there is
merit to extensive hyperparameter tuning, evident in the fact that

Figure 4: Joint distribution of model and preprocessing op-
erators per sequence. Max AUC is relative to only the se-
quences within each category.

Figure 5: Model transition likelihood in consecutivemanual
iterations (row represents current iteration, and column rep-
resents next iteration).

Model Manual Mixed Auto

RandomForest 40.83% 76.90% 53.32%
KNeighbors 37.99% 37.74% 50.54%

SVC 28.25% 23.73% 46.26%

Table 3:Mean % iterations per sequence for the top 3models.

auto sequences achieve a 3% higher 𝑝𝑆 than manual ones as dis-
cussed in Section 5.1. Together, these insights suggest that a hybrid
approach, wherein coarse-grained search is first performed over
the combinations of preprocessing and model operators, followed
by fine-grained search doing hyperparameter tuning on the most
promising combinations, would be both effective and also efficient
at finding a high-performing workflow.

5.3 On Model Tuning
While automated sequences are dominated by hyperpa-
rameter changes, users iterating with manual sequences
focus on model selection and eventually converge on
high-performing models.

Since changing theMLmodel is themost common type ofmanual
workflow change, making up 45.04% of all manual runs as shown
in Table 2, we look into which models are abandoned and which
are kept from one iteration to the next. Table 3 shows that in all
groups (manual, mixed, and auto), users are much less likely to
stick with SVC thank RF and KNN. Whenever SVC is used in a
manual sequence, it accounts for only 28.25% of the runs, compared
to 40.83% for RF and 37.99% for KNN. Combined with our findings
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Figure 6: Examples of effective and ineffective sequences for a popular classification task. The shaded blue area represents the
maximumAUC up until that point, the red text describesmodel changes, and the purple text describes preprocessing changes.

from Figure 1 that RF and KNN perform better than SVC on average,
we conclude that users are able to waste fewer iterations on models
that do not work as well.

Furthermore, the transition probabilities between different pairs
of models in Figure 5 reveal that users tend to stay with the same
model from one iteration to the next, as evidenced by the high
probabilities along the diagonal of the matrix. However, when a
switch occurs, the model that is switched to the most is RF, with
26.22% of all model changes transitioning to RF.

6 CASE STUDIES
So far, we have described insights aggregated across multiple users,
reflecting the population-level trends in ML development. In this
section, we dive deep into a few examples of both effective and
ineffective practices to offer a complementary view on user behavior.
We define a highly effective sequence as one that achieves a high
AUC score over just a few iterations, wasting few to no iterations
after 𝑝𝑆 has been achieved.

In Figure 6, we show examples of highly-effective sequences (A
and B), and an ineffective sequence (C) for the supervised classifi-
cation task that was attempted by the highest number of users on
OpenML. The dataset used in this binary classification task most
notably has a very imbalanced class distribution, with 98.35% of
the instances belonging to the majority class. Workflows that ac-
count for the class imbalance problem are able to achieve higher
performance than those who do not.

Figure 6A) illustrates one such example of a user who was suc-
cessful in creating a near-optimal ML workflow for this task. This
user iterated on the workflow using a manual sequence (based
on our definition in Section 5), starting off by selecting a model,
then adding data preprocessing, beginning with StandardScaler and
Principal Component Analysis (PCA). They then incorporated an
oversampling strategy, ADASYN, to counter the the class imbalance
problem, resulting in a significant performance boost.

Similarly, Figure 6B) also illustrates a user who iterated with a
manual sequence, experimenting with different combinations of
model and preprocessing operators, before discovering the high im-
pact of data oversampling. As soon as they incorporated ADASYN,
they were able to quickly run through a final model selection phase
to achieve one of the highest AUC scores for the task.

Finally, as shown in Figure 6C), the user was off to a strong start
by picking similar models as chosen in A) and B). However, the user
then spent over one hundred automated iterations exhaustively
tuning hyperparameters, resulting in over 95% of their iterations

being wasted, i.e., they did not improve 𝑝𝑆 . This user could benefit
from learning the strategy adopted in manual approaches in A)
and B) to first examine dataset characteristics to guide modeling
decisions, instead of optimizing hyperparameters prematurely.

These case studies demonstrate the potential benefits of knowl-
edge transfer from experts to novices, conceivably through a human-
in-the-loop system for ML workflow development that guides users
with crowdsourced best practices.

7 DISCUSSION AND CONCLUSION
In this study, we set out to demystify the dark art of machine learn-
ing workflow development. By analyzing over 475k user-generated
runs on OpenML, we discovered that the performance gap between
manual and automated approaches to workflow iteration is negli-
gible, but the manual approach is able to find the best performing
workflow with much fewer wasted iterations. The model perfor-
mance parity explains the general enthusiasm around automated
machine learning (auto-ML) systems in recent years, but the mas-
sive discrepancy in efficiency explains the sluggish growth in adop-
tion of auto-ML despite the hype. Our case studies revealed how
human users are often far better at minimizing wasted work than
automation. While our study surfaced many interesting patterns
in iterative ML workflow development, our dataset provides a lim-
ited view into the user’s thought process behind performing the
manual iterations, as shown in the case studies. A more in-depth
user study is a promising direction for future work towards un-
derstanding the motivations and cognitive processes behind ML
model development. This understanding can form the basis of a
more effective and efficient auto-ML strategy by mimicking human
experts. Likewise, human-in-the-loop ML systems can benefit from
automated guidance suggesting areas of exploration that the ML
developer may not have thought of. Our study aims to shed light
on design insights for building more usable and more intelligent
machine learning development systems, towards the ultimate goal
of democratizing machine learning.
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